class DistributedLDAModel extends LDAModel
Distributed model fitted by LDA. This type of model is currently only produced by Expectation-Maximization (EM).
This model stores the inferred topics, the full training dataset, and the topic distribution for each training document.
- Annotations
- @Since("1.6.0")
- Source
- LDA.scala
- Grouped
- Alphabetic
- By Inheritance
- DistributedLDAModel
- LDAModel
- MLWritable
- LDAParams
- HasCheckpointInterval
- HasSeed
- HasMaxIter
- HasFeaturesCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def $[T](param: Param[T]): TAn alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-   final  val checkpointInterval: IntParamParam for set checkpoint interval (>= 1) or disable checkpoint (-1). Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext. - Definition Classes
- HasCheckpointInterval
 
-   final  def clear(param: Param[_]): DistributedLDAModel.this.typeClears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def copy(extra: ParamMap): DistributedLDAModelCreates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- DistributedLDAModel → Model → Transformer → PipelineStage → Params
- Annotations
- @Since("1.6.0")
 
-    def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): TCopies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def defaultCopy[T <: Params](extra: ParamMap): TDefault implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
-    def deleteCheckpointFiles(): UnitRemove any remaining checkpoint files from training. Remove any remaining checkpoint files from training. - Annotations
- @Since("2.0.0")
- See also
 
-    def describeTopics(): DataFrame- Definition Classes
- LDAModel
- Annotations
- @Since("1.6.0")
 
-    def describeTopics(maxTermsPerTopic: Int): DataFrameReturn the topics described by their top-weighted terms. Return the topics described by their top-weighted terms. - maxTermsPerTopic
- Maximum number of terms to collect for each topic. Default value of 10. 
- returns
- Local DataFrame with one topic per Row, with columns: - "topic": IntegerType: topic index
- "termIndices": ArrayType(IntegerType): term indices, sorted in order of decreasing term importance
- "termWeights": ArrayType(DoubleType): corresponding sorted term weights
 
 - Definition Classes
- LDAModel
- Annotations
- @Since("1.6.0")
 
-   final  val docConcentration: DoubleArrayParamConcentration parameter (commonly named "alpha") for the prior placed on documents' distributions over topics ("theta"). Concentration parameter (commonly named "alpha") for the prior placed on documents' distributions over topics ("theta"). This is the parameter to a Dirichlet distribution, where larger values mean more smoothing (more regularization). If not set by the user, then docConcentration is set automatically. If set to singleton vector [alpha], then alpha is replicated to a vector of length k in fitting. Otherwise, the docConcentration vector must be length k. (default = automatic) Optimizer-specific parameter settings: - EM- Currently only supports symmetric distributions, so all values in the vector should be the same.
- Values should be greater than 1.0
- default = uniformly (50 / k) + 1, where 50/k is common in LDA libraries and +1 follows from Asuncion et al. (2009), who recommend a +1 adjustment for EM.
 
- Online- Values should be greater than or equal to 0
- default = uniformly (1.0 / k), following the implementation from here.
 
 - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
- EM
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def estimatedDocConcentration: VectorValue for docConcentration estimated from data. Value for docConcentration estimated from data. If Online LDA was used and optimizeDocConcentration was set to false, then this returns the fixed (given) value for the docConcentration parameter. - Definition Classes
- LDAModel
- Annotations
- @Since("2.0.0")
 
-    def estimatedSize: LongFor ml connect only. For ml connect only. Estimate the size of this model in bytes. This is an approximation, the real size might be different. 1, Both driver side memory usage and distributed objects size (like DataFrame, RDD, Graph, Summary) are counted. 2, Lazy vals are not counted, e.g., an auxiliary object used in prediction. 3, The default implementation uses org.apache.spark.util.SizeEstimator.estimate, some models override the default implementation to achieve more precise estimation. 4, For 3-rd extension, if external languages are used, it is recommended to override this method and return a proper size.- Definition Classes
- DistributedLDAModel → Model
 
-    def explainParam(param: Param[_]): StringExplains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
-    def explainParams(): StringExplains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
-   final  def extractParamMap(): ParamMapextractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
-   final  def extractParamMap(extra: ParamMap): ParamMapExtracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
-   final  val featuresCol: Param[String]Param for features column name. Param for features column name. - Definition Classes
- HasFeaturesCol
 
-   final  def get[T](param: Param[T]): Option[T]Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
-    def getCheckpointFiles: Array[String]If using checkpointing and LDA.keepLastCheckpointis set to true, then there may be saved checkpoint files.If using checkpointing and LDA.keepLastCheckpointis set to true, then there may be saved checkpoint files. This method is provided so that users can manage those files.Note that removing the checkpoints can cause failures if a partition is lost and is needed by certain DistributedLDAModel methods. Reference counting will clean up the checkpoints when this model and derivative data go out of scope. - returns
- Checkpoint files from training 
 - Annotations
- @Since("2.0.0")
 
-   final  def getCheckpointInterval: Int- Definition Classes
- HasCheckpointInterval
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def getDefault[T](param: Param[T]): Option[T]Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
-    def getDocConcentration: Array[Double]- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  def getFeaturesCol: String- Definition Classes
- HasFeaturesCol
 
-    def getK: Int- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    def getKeepLastCheckpoint: Boolean- Definition Classes
- LDAParams
- Annotations
- @Since("2.0.0")
 
-    def getLearningDecay: Double- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    def getLearningOffset: Double- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  def getMaxIter: Int- Definition Classes
- HasMaxIter
 
-    def getOldDocConcentration: VectorGet docConcentration used by spark.mllib LDA Get docConcentration used by spark.mllib LDA - Attributes
- protected
- Definition Classes
- LDAParams
 
-    def getOldTopicConcentration: DoubleGet topicConcentration used by spark.mllib LDA Get topicConcentration used by spark.mllib LDA - Attributes
- protected
- Definition Classes
- LDAParams
 
-    def getOptimizeDocConcentration: Boolean- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    def getOptimizer: String- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  def getOrDefault[T](param: Param[T]): TGets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
-    def getParam(paramName: String): Param[Any]Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
-   final  def getSeed: Long- Definition Classes
- HasSeed
 
-    def getSubsamplingRate: Double- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    def getTopicConcentration: Double- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    def getTopicDistributionCol: String- Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  def hasDefault[T](param: Param[T]): BooleanTests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
-    def hasParam(paramName: String): BooleanTests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
-    def hasParent: BooleanIndicates whether this Model has a corresponding parent. 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isDefined(param: Param[_]): BooleanChecks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
-    def isDistributed: BooleanIndicates whether this instance is of type DistributedLDAModel Indicates whether this instance is of type DistributedLDAModel - Definition Classes
- DistributedLDAModel → LDAModel
- Annotations
- @Since("1.6.0")
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def isSet(param: Param[_]): BooleanChecks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val k: IntParamParam for the number of topics (clusters) to infer. Param for the number of topics (clusters) to infer. Must be > 1. Default: 10. - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  val keepLastCheckpoint: BooleanParamFor EM optimizer only: optimizer = "em". For EM optimizer only: optimizer = "em". If using checkpointing, this indicates whether to keep the last checkpoint. If false, then the checkpoint will be deleted. Deleting the checkpoint can cause failures if a data partition is lost, so set this bit with care. Note that checkpoints will be cleaned up via reference counting, regardless. See DistributedLDAModel.getCheckpointFilesfor getting remaining checkpoints andDistributedLDAModel.deleteCheckpointFilesfor removing remaining checkpoints.Default: true - Definition Classes
- LDAParams
- Annotations
- @Since("2.0.0")
 
-   final  val learningDecay: DoubleParamFor Online optimizer only: optimizer = "online". For Online optimizer only: optimizer = "online". Learning rate, set as an exponential decay rate. This should be between (0.5, 1.0] to guarantee asymptotic convergence. This is called "kappa" in the Online LDA paper (Hoffman et al., 2010). Default: 0.51, based on Hoffman et al. - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  val learningOffset: DoubleParamFor Online optimizer only: optimizer = "online". For Online optimizer only: optimizer = "online". A (positive) learning parameter that downweights early iterations. Larger values make early iterations count less. This is called "tau0" in the Online LDA paper (Hoffman et al., 2010) Default: 1024, following Hoffman et al. - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logLikelihood(dataset: Dataset[_]): DoubleCalculates a lower bound on the log likelihood of the entire corpus. Calculates a lower bound on the log likelihood of the entire corpus. See Equation (16) in the Online LDA paper (Hoffman et al., 2010). WARNING: If this model is an instance of DistributedLDAModel (produced when optimizer is set to "em"), this involves collecting a large topicsMatrix to the driver. This implementation may be changed in the future. - dataset
- test corpus to use for calculating log likelihood 
- returns
- variational lower bound on the log likelihood of the entire corpus 
 - Definition Classes
- LDAModel
- Annotations
- @Since("2.0.0")
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logPerplexity(dataset: Dataset[_]): DoubleCalculate an upper bound on perplexity. Calculate an upper bound on perplexity. (Lower is better.) See Equation (16) in the Online LDA paper (Hoffman et al., 2010). WARNING: If this model is an instance of DistributedLDAModel (produced when optimizer is set to "em"), this involves collecting a large topicsMatrix to the driver. This implementation may be changed in the future. - dataset
- test corpus to use for calculating perplexity 
- returns
- Variational upper bound on log perplexity per token. 
 - Definition Classes
- LDAModel
- Annotations
- @Since("2.0.0")
 
-    lazy val logPrior: DoubleLog probability of the current parameter estimate: log P(topics, topic distributions for docs | Dirichlet hyperparameters) Log probability of the current parameter estimate: log P(topics, topic distributions for docs | Dirichlet hyperparameters) - Annotations
- @Since("1.6.0")
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val maxIter: IntParamParam for maximum number of iterations (>= 0). Param for maximum number of iterations (>= 0). - Definition Classes
- HasMaxIter
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  val optimizeDocConcentration: BooleanParamFor Online optimizer only (currently): optimizer = "online". For Online optimizer only (currently): optimizer = "online". Indicates whether the docConcentration (Dirichlet parameter for document-topic distribution) will be optimized during training. Setting this to true will make the model more expressive and fit the training data better. Default: false - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  val optimizer: Param[String]Optimizer or inference algorithm used to estimate the LDA model. Optimizer or inference algorithm used to estimate the LDA model. Currently supported (case-insensitive): - "online": Online Variational Bayes (default)
- "em": Expectation-Maximization
 For details, see the following papers: - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    lazy val params: Array[Param[_]]Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
-    var parent: Estimator[LDAModel]The parent estimator that produced this model. The parent estimator that produced this model. - Definition Classes
- Model
- Note
- For ensembles' component Models, this value can be null. 
 
-    def save(path: String): UnitSaves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
 
-   final  val seed: LongParamParam for random seed. Param for random seed. - Definition Classes
- HasSeed
 
-   final  def set(paramPair: ParamPair[_]): DistributedLDAModel.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set(param: String, value: Any): DistributedLDAModel.this.typeSets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set[T](param: Param[T], value: T): DistributedLDAModel.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
-   final  def setDefault(paramPairs: ParamPair[_]*): DistributedLDAModel.this.typeSets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def setDefault[T](param: Param[T], value: T): DistributedLDAModel.this.typeSets a default value for a param. 
-    def setFeaturesCol(value: String): DistributedLDAModel.this.typeThe features for LDA should be a Vectorrepresenting the word counts in a document.The features for LDA should be a Vectorrepresenting the word counts in a document. The vector should be of length vocabSize, with counts for each term (word).- Definition Classes
- LDAModel
- Annotations
- @Since("1.6.0")
 
-    def setParent(parent: Estimator[LDAModel]): LDAModelSets the parent of this model (Java API). Sets the parent of this model (Java API). - Definition Classes
- Model
 
-    def setSeed(value: Long): DistributedLDAModel.this.type- Definition Classes
- LDAModel
- Annotations
- @Since("1.6.0")
 
-    def setTopicDistributionCol(value: String): DistributedLDAModel.this.type- Definition Classes
- LDAModel
- Annotations
- @Since("2.2.0")
 
-   final  val subsamplingRate: DoubleParamFor Online optimizer only: optimizer = "online". For Online optimizer only: optimizer = "online". Fraction of the corpus to be sampled and used in each iteration of mini-batch gradient descent, in range (0, 1]. Note that this should be adjusted in synch with LDA.maxIterso the entire corpus is used. Specifically, set both so that maxIterations * miniBatchFraction greater than or equal to 1.Note: This is the same as the miniBatchFractionparameter in org.apache.spark.mllib.clustering.OnlineLDAOptimizer.Default: 0.05, i.e., 5% of total documents. - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  val supportedOptimizers: Array[String]Supported values for Param optimizer. Supported values for Param optimizer. - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toLocal: LocalLDAModelConvert this distributed model to a local representation. Convert this distributed model to a local representation. This discards info about the training dataset. WARNING: This involves collecting a large topicsMatrix to the driver. - Annotations
- @Since("1.6.0")
 
-    def toString(): String- Definition Classes
- DistributedLDAModel → Identifiable → AnyRef → Any
- Annotations
- @Since("3.0.0")
 
-   final  val topicConcentration: DoubleParamConcentration parameter (commonly named "beta" or "eta") for the prior placed on topics' distributions over terms. Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics' distributions over terms. This is the parameter to a symmetric Dirichlet distribution. Note: The topics' distributions over terms are called "beta" in the original LDA paper by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009. If not set by the user, then topicConcentration is set automatically. (default = automatic) Optimizer-specific parameter settings: - EM- Value should be greater than 1.0
- default = 0.1 + 1, where 0.1 gives a small amount of smoothing and +1 follows Asuncion et al. (2009), who recommend a +1 adjustment for EM.
 
- Online- Value should be greater than or equal to 0
- default = (1.0 / k), following the implementation from here.
 
 - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
- EM
-   final  val topicDistributionCol: Param[String]Output column with estimates of the topic mixture distribution for each document (often called "theta" in the literature). Output column with estimates of the topic mixture distribution for each document (often called "theta" in the literature). Returns a vector of zeros for an empty document. This uses a variational approximation following Hoffman et al. (2010), where the approximate distribution is called "gamma." Technically, this method returns this approximation "gamma" for each document. - Definition Classes
- LDAParams
- Annotations
- @Since("1.6.0")
 
-    def topicsMatrix: MatrixInferred topics, where each topic is represented by a distribution over terms. Inferred topics, where each topic is represented by a distribution over terms. This is a matrix of size vocabSize x k, where each column is a topic. No guarantees are given about the ordering of the topics. WARNING: If this model is actually a DistributedLDAModel instance produced by the Expectation-Maximization ("em") optimizer, then this method could involve collecting a large amount of data to the driver (on the order of vocabSize x k). - Definition Classes
- LDAModel
- Annotations
- @Since("2.0.0")
 
-    lazy val trainingLogLikelihood: DoubleLog likelihood of the observed tokens in the training set, given the current parameter estimates: log P(docs | topics, topic distributions for docs, Dirichlet hyperparameters) Log likelihood of the observed tokens in the training set, given the current parameter estimates: log P(docs | topics, topic distributions for docs, Dirichlet hyperparameters) Notes: - This excludes the prior; for that, use logPrior.
- Even with logPrior, this is NOT the same as the data log likelihood given the hyperparameters.
- This is computed from the topic distributions computed during training. If you call
   logLikelihood()on the same training dataset, the topic distributions will be computed again, possibly giving different results.
 - Annotations
- @Since("1.6.0")
 
-    def transform(dataset: Dataset[_]): DataFrameTransforms the input dataset. Transforms the input dataset. WARNING: If this model is an instance of DistributedLDAModel (produced when optimizer is set to "em"), this involves collecting a large topicsMatrix to the driver. This implementation may be changed in the future. - Definition Classes
- LDAModel → Transformer
- Annotations
- @Since("2.0.0")
 
-    def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrameTransforms the dataset with provided parameter map as additional parameters. Transforms the dataset with provided parameter map as additional parameters. - dataset
- input dataset 
- paramMap
- additional parameters, overwrite embedded params 
- returns
- transformed dataset 
 - Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
 
-    def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrameTransforms the dataset with optional parameters Transforms the dataset with optional parameters - dataset
- input dataset 
- firstParamPair
- the first param pair, overwrite embedded params 
- otherParamPairs
- other param pairs, overwrite embedded params 
- returns
- transformed dataset 
 - Definition Classes
- Transformer
- Annotations
- @Since("2.0.0") @varargs()
 
-    def transformSchema(schema: StructType): StructTypeCheck transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- LDAModel → PipelineStage
- Annotations
- @Since("1.6.0")
 
-    def transformSchema(schema: StructType, logging: Boolean): StructType:: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
-    val uid: StringAn immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- LDAModel → Identifiable
- Annotations
- @Since("1.6.0")
 
-    def validateAndTransformSchema(schema: StructType): StructTypeValidates and transforms the input schema. Validates and transforms the input schema. - schema
- input schema 
- returns
- output schema 
 - Attributes
- protected
- Definition Classes
- LDAParams
 
-    val vocabSize: Int- Definition Classes
- LDAModel
- Annotations
- @Since("1.6.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def write: MLWriterReturns an MLWriterinstance for this ML instance.Returns an MLWriterinstance for this ML instance.- Definition Classes
- DistributedLDAModel → MLWritable
- Annotations
- @Since("1.6.0")
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9) 
 
Inherited from LDAModel
Inherited from MLWritable
Inherited from LDAParams
Inherited from HasCheckpointInterval
Inherited from HasSeed
Inherited from HasMaxIter
Inherited from HasFeaturesCol
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.