object Matrices
Factory methods for org.apache.spark.mllib.linalg.Matrix.
- Annotations
- @Since("1.0.0")
- Source
- Matrices.scala
- Alphabetic
- By Inheritance
- Matrices
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def dense(numRows: Int, numCols: Int, values: Array[Double]): MatrixCreates a column-major dense matrix. Creates a column-major dense matrix. - numRows
- number of rows 
- numCols
- number of columns 
- values
- matrix entries in column major 
 - Annotations
- @Since("1.0.0")
 
-    def diag(vector: Vector): MatrixGenerate a diagonal matrix in Matrixformat from the supplied values.Generate a diagonal matrix in Matrixformat from the supplied values.- vector
- a - Vectorthat will form the values on the diagonal of the matrix
- returns
- Square - Matrixwith size- values.lengthx- values.lengthand- valueson the diagonal
 - Annotations
- @Since("1.2.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def eye(n: Int): MatrixGenerate a dense Identity Matrix in Matrixformat.Generate a dense Identity Matrix in Matrixformat.- n
- number of rows and columns of the matrix 
- returns
- Matrixwith size- nx- nand values of ones on the diagonal
 - Annotations
- @Since("1.2.0")
 
-    def fromML(m: ml.linalg.Matrix): MatrixConvert new linalg type to spark.mllib type. Convert new linalg type to spark.mllib type. Light copy; only copies references - Annotations
- @Since("2.0.0")
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def horzcat(matrices: Array[Matrix]): MatrixHorizontally concatenate a sequence of matrices. Horizontally concatenate a sequence of matrices. The returned matrix will be in the format the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in a sparse matrix. If the Array is empty, an empty DenseMatrixwill be returned.- matrices
- array of matrices 
- returns
- a single - Matrixcomposed of the matrices that were horizontally concatenated
 - Annotations
- @Since("1.3.0")
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def ones(numRows: Int, numCols: Int): MatrixGenerate a DenseMatrixconsisting of ones.Generate a DenseMatrixconsisting of ones.- numRows
- number of rows of the matrix 
- numCols
- number of columns of the matrix 
- returns
- Matrixwith size- numRowsx- numColsand values of ones
 - Annotations
- @Since("1.2.0")
 
-    def rand(numRows: Int, numCols: Int, rng: Random): MatrixGenerate a DenseMatrixconsisting ofi.i.d.uniform random numbers.Generate a DenseMatrixconsisting ofi.i.d.uniform random numbers.- numRows
- number of rows of the matrix 
- numCols
- number of columns of the matrix 
- rng
- a random number generator 
- returns
- Matrixwith size- numRowsx- numColsand values in U(0, 1)
 - Annotations
- @Since("1.2.0")
 
-    def randn(numRows: Int, numCols: Int, rng: Random): MatrixGenerate a DenseMatrixconsisting ofi.i.d.gaussian random numbers.Generate a DenseMatrixconsisting ofi.i.d.gaussian random numbers.- numRows
- number of rows of the matrix 
- numCols
- number of columns of the matrix 
- rng
- a random number generator 
- returns
- Matrixwith size- numRowsx- numColsand values in N(0, 1)
 - Annotations
- @Since("1.2.0")
 
-    def sparse(numRows: Int, numCols: Int, colPtrs: Array[Int], rowIndices: Array[Int], values: Array[Double]): MatrixCreates a column-major sparse matrix in Compressed Sparse Column (CSC) format. Creates a column-major sparse matrix in Compressed Sparse Column (CSC) format. - numRows
- number of rows 
- numCols
- number of columns 
- colPtrs
- the index corresponding to the start of a new column 
- rowIndices
- the row index of the entry 
- values
- non-zero matrix entries in column major 
 - Annotations
- @Since("1.2.0")
 
-    def speye(n: Int): MatrixGenerate a sparse Identity Matrix in Matrixformat.Generate a sparse Identity Matrix in Matrixformat.- n
- number of rows and columns of the matrix 
- returns
- Matrixwith size- nx- nand values of ones on the diagonal
 - Annotations
- @Since("1.3.0")
 
-    def sprand(numRows: Int, numCols: Int, density: Double, rng: Random): MatrixGenerate a SparseMatrixconsisting ofi.i.d.uniform random numbers.Generate a SparseMatrixconsisting ofi.i.d.uniform random numbers.- numRows
- number of rows of the matrix 
- numCols
- number of columns of the matrix 
- density
- the desired density for the matrix 
- rng
- a random number generator 
- returns
- Matrixwith size- numRowsx- numColsand values in U(0, 1)
 - Annotations
- @Since("1.3.0")
 
-    def sprandn(numRows: Int, numCols: Int, density: Double, rng: Random): MatrixGenerate a SparseMatrixconsisting ofi.i.d.gaussian random numbers.Generate a SparseMatrixconsisting ofi.i.d.gaussian random numbers.- numRows
- number of rows of the matrix 
- numCols
- number of columns of the matrix 
- density
- the desired density for the matrix 
- rng
- a random number generator 
- returns
- Matrixwith size- numRowsx- numColsand values in N(0, 1)
 - Annotations
- @Since("1.3.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def vertcat(matrices: Array[Matrix]): MatrixVertically concatenate a sequence of matrices. Vertically concatenate a sequence of matrices. The returned matrix will be in the format the matrices are supplied in. Supplying a mix of dense and sparse matrices will result in a sparse matrix. If the Array is empty, an empty DenseMatrixwill be returned.- matrices
- array of matrices 
- returns
- a single - Matrixcomposed of the matrices that were vertically concatenated
 - Annotations
- @Since("1.3.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def zeros(numRows: Int, numCols: Int): MatrixGenerate a Matrixconsisting of zeros.Generate a Matrixconsisting of zeros.- numRows
- number of rows of the matrix 
- numCols
- number of columns of the matrix 
- returns
- Matrixwith size- numRowsx- numColsand values of zeros
 - Annotations
- @Since("1.2.0")
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)