class IndexedRowMatrix extends DistributedMatrix
Represents a row-oriented org.apache.spark.mllib.linalg.distributed.DistributedMatrix with indexed rows.
- Annotations
- @Since("1.0.0")
- Source
- IndexedRowMatrix.scala
- Alphabetic
- By Inheritance
- IndexedRowMatrix
- DistributedMatrix
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new IndexedRowMatrix(rows: RDD[IndexedRow])Alternative constructor leaving matrix dimensions to be determined automatically. Alternative constructor leaving matrix dimensions to be determined automatically. - Annotations
- @Since("1.0.0")
 
-    new IndexedRowMatrix(rows: RDD[IndexedRow], nRows: Long, nCols: Int)- rows
- indexed rows of this matrix 
- nRows
- number of rows. A non-positive value means unknown, and then the number of rows will be determined by the max row index plus one. 
- nCols
- number of columns. A non-positive value means unknown, and then the number of columns will be determined by the size of the first row. 
 - Annotations
- @Since("1.0.0")
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def columnSimilarities(): CoordinateMatrixCompute all cosine similarities between columns of this matrix using the brute-force approach of computing normalized dot products. Compute all cosine similarities between columns of this matrix using the brute-force approach of computing normalized dot products. - returns
- An n x n sparse upper-triangular matrix of cosine similarities between columns of this matrix. 
 - Annotations
- @Since("1.6.0")
 
-    def computeGramianMatrix(): MatrixComputes the Gramian matrix A^T A.Computes the Gramian matrix A^T A.- Annotations
- @Since("1.0.0")
- Note
- This cannot be computed on matrices with more than 65535 columns. 
 
-    def computeSVD(k: Int, computeU: Boolean = false, rCond: Double = 1e-9): SingularValueDecomposition[IndexedRowMatrix, Matrix]Computes the singular value decomposition of this IndexedRowMatrix. Computes the singular value decomposition of this IndexedRowMatrix. Denote this matrix by A (m x n), this will compute matrices U, S, V such that A = U * S * V'. The cost and implementation of this method is identical to that in org.apache.spark.mllib.linalg.distributed.RowMatrix With the addition of indices. At most k largest non-zero singular values and associated vectors are returned. If there are k such values, then the dimensions of the return will be: U is an org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix of size m x k that satisfies U'U = eye(k), s is a Vector of size k, holding the singular values in descending order, and V is a local Matrix of size n x k that satisfies V'V = eye(k). - k
- number of singular values to keep. We might return less than k if there are numerically zero singular values. See rCond. 
- computeU
- whether to compute U 
- rCond
- the reciprocal condition number. All singular values smaller than rCond * sigma(0) are treated as zero, where sigma(0) is the largest singular value. 
- returns
- SingularValueDecomposition(U, s, V) 
 - Annotations
- @Since("1.0.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def multiply(B: Matrix): IndexedRowMatrixMultiply this matrix by a local matrix on the right. Multiply this matrix by a local matrix on the right. - B
- a local matrix whose number of rows must match the number of columns of this matrix 
- returns
- an IndexedRowMatrix representing the product, which preserves partitioning 
 - Annotations
- @Since("1.0.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def numCols(): LongGets or computes the number of columns. Gets or computes the number of columns. - Definition Classes
- IndexedRowMatrix → DistributedMatrix
- Annotations
- @Since("1.0.0")
 
-    def numRows(): LongGets or computes the number of rows. Gets or computes the number of rows. - Definition Classes
- IndexedRowMatrix → DistributedMatrix
- Annotations
- @Since("1.0.0")
 
-    val rows: RDD[IndexedRow]- Annotations
- @Since("1.0.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toBlockMatrix(rowsPerBlock: Int, colsPerBlock: Int): BlockMatrixConverts to BlockMatrix. Converts to BlockMatrix. Blocks may be sparse or dense depending on the sparsity of the rows. - rowsPerBlock
- The number of rows of each block. The blocks at the bottom edge may have a smaller value. Must be an integer value greater than 0. 
- colsPerBlock
- The number of columns of each block. The blocks at the right edge may have a smaller value. Must be an integer value greater than 0. 
- returns
 - Annotations
- @Since("1.3.0")
 
-    def toBlockMatrix(): BlockMatrixConverts to BlockMatrix. Converts to BlockMatrix. Creates blocks with size 1024 x 1024. - Annotations
- @Since("1.3.0")
 
-    def toCoordinateMatrix(): CoordinateMatrixConverts this matrix to a org.apache.spark.mllib.linalg.distributed.CoordinateMatrix. Converts this matrix to a org.apache.spark.mllib.linalg.distributed.CoordinateMatrix. - Annotations
- @Since("1.3.0")
 
-    def toRowMatrix(): RowMatrixDrops row indices and converts this matrix to a org.apache.spark.mllib.linalg.distributed.RowMatrix. Drops row indices and converts this matrix to a org.apache.spark.mllib.linalg.distributed.RowMatrix. - Annotations
- @Since("1.0.0")
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)