object RandomRDDs
Generator methods for creating RDDs comprised of i.i.d. samples from some distribution.
- Annotations
- @Since("1.1.0")
- Source
- RandomRDDs.scala
- Alphabetic
- By Inheritance
- RandomRDDs
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDDRandomRDDs.exponentialJavaRDDwith the default number of partitions and the default seed.RandomRDDs.exponentialJavaRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
 
-    def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDDRandomRDDs.exponentialJavaRDDwith the default seed.RandomRDDs.exponentialJavaRDDwith the default seed.- Annotations
- @Since("1.3.0")
 
-    def exponentialJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDDJava-friendly version of RandomRDDs.exponentialRDD.Java-friendly version of RandomRDDs.exponentialRDD.- Annotations
- @Since("1.3.0")
 
-    def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]RandomRDDs.exponentialJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.exponentialJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
 
-    def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]RandomRDDs.exponentialJavaVectorRDDwith the default seed.RandomRDDs.exponentialJavaVectorRDDwith the default seed.- Annotations
- @Since("1.3.0")
 
-    def exponentialJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]Java-friendly version of RandomRDDs.exponentialVectorRDD.Java-friendly version of RandomRDDs.exponentialVectorRDD.- Annotations
- @Since("1.3.0")
 
-    def exponentialRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]Generates an RDD comprised of i.i.d.samples from the exponential distribution with the input mean.Generates an RDD comprised of i.i.d.samples from the exponential distribution with the input mean.- sc
- SparkContext used to create the RDD. 
- mean
- Mean, or 1 / lambda, for the exponential distribution. 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Double] comprised of - i.i.d.samples ~ Pois(mean).
 - Annotations
- @Since("1.3.0")
 
-    def exponentialVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the exponential distribution with the input mean.Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the exponential distribution with the input mean.- sc
- SparkContext used to create the RDD. 
- mean
- Mean, or 1 / lambda, for the Exponential distribution. 
- numRows
- Number of Vectors in the RDD. 
- numCols
- Number of elements in each Vector. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism)
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Vector] with vectors containing - i.i.d.samples ~ Exp(mean).
 - Annotations
- @Since("1.3.0")
 
-    def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long): JavaDoubleRDDRandomRDDs.gammaJavaRDDwith the default number of partitions and the default seed.RandomRDDs.gammaJavaRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
 
-    def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int): JavaDoubleRDDRandomRDDs.gammaJavaRDDwith the default seed.RandomRDDs.gammaJavaRDDwith the default seed.- Annotations
- @Since("1.3.0")
 
-    def gammaJavaRDD(jsc: JavaSparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDDJava-friendly version of RandomRDDs.gammaRDD.Java-friendly version of RandomRDDs.gammaRDD.- Annotations
- @Since("1.3.0")
 
-    def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int): JavaRDD[Vector]RandomRDDs.gammaJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.gammaJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
 
-    def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]RandomRDDs.gammaJavaVectorRDDwith the default seed.RandomRDDs.gammaJavaVectorRDDwith the default seed.- Annotations
- @Since("1.3.0")
 
-    def gammaJavaVectorRDD(jsc: JavaSparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]Java-friendly version of RandomRDDs.gammaVectorRDD.Java-friendly version of RandomRDDs.gammaVectorRDD.- Annotations
- @Since("1.3.0")
 
-    def gammaRDD(sc: SparkContext, shape: Double, scale: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]Generates an RDD comprised of i.i.d.samples from the gamma distribution with the input shape and scale.Generates an RDD comprised of i.i.d.samples from the gamma distribution with the input shape and scale.- sc
- SparkContext used to create the RDD. 
- shape
- shape parameter (greater than 0) for the gamma distribution 
- scale
- scale parameter (greater than 0) for the gamma distribution 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Double] comprised of - i.i.d.samples ~ Pois(mean).
 - Annotations
- @Since("1.3.0")
 
-    def gammaVectorRDD(sc: SparkContext, shape: Double, scale: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the gamma distribution with the input shape and scale.Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the gamma distribution with the input shape and scale.- sc
- SparkContext used to create the RDD. 
- shape
- shape parameter (greater than 0) for the gamma distribution. 
- scale
- scale parameter (greater than 0) for the gamma distribution. 
- numRows
- Number of Vectors in the RDD. 
- numCols
- Number of elements in each Vector. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism)
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Vector] with vectors containing - i.i.d.samples ~ Exp(mean).
 - Annotations
- @Since("1.3.0")
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long): JavaDoubleRDDRandomRDDs.logNormalJavaRDDwith the default number of partitions and the default seed.RandomRDDs.logNormalJavaRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
 
-    def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int): JavaDoubleRDDRandomRDDs.logNormalJavaRDDwith the default seed.RandomRDDs.logNormalJavaRDDwith the default seed.- Annotations
- @Since("1.3.0")
 
-    def logNormalJavaRDD(jsc: JavaSparkContext, mean: Double, std: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDDJava-friendly version of RandomRDDs.logNormalRDD.Java-friendly version of RandomRDDs.logNormalRDD.- Annotations
- @Since("1.3.0")
 
-    def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int): JavaRDD[Vector]RandomRDDs.logNormalJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.logNormalJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.3.0")
 
-    def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]RandomRDDs.logNormalJavaVectorRDDwith the default seed.RandomRDDs.logNormalJavaVectorRDDwith the default seed.- Annotations
- @Since("1.3.0")
 
-    def logNormalJavaVectorRDD(jsc: JavaSparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]Java-friendly version of RandomRDDs.logNormalVectorRDD.Java-friendly version of RandomRDDs.logNormalVectorRDD.- Annotations
- @Since("1.3.0")
 
-    def logNormalRDD(sc: SparkContext, mean: Double, std: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]Generates an RDD comprised of i.i.d.samples from the log normal distribution with the input mean and standard deviationGenerates an RDD comprised of i.i.d.samples from the log normal distribution with the input mean and standard deviation- sc
- SparkContext used to create the RDD. 
- mean
- mean for the log normal distribution 
- std
- standard deviation for the log normal distribution 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Double] comprised of - i.i.d.samples ~ Pois(mean).
 - Annotations
- @Since("1.3.0")
 
-    def logNormalVectorRDD(sc: SparkContext, mean: Double, std: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from a log normal distribution.Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from a log normal distribution.- sc
- SparkContext used to create the RDD. 
- mean
- Mean of the log normal distribution. 
- std
- Standard deviation of the log normal distribution. 
- numRows
- Number of Vectors in the RDD. 
- numCols
- Number of elements in each Vector. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Vector] with vectors containing - i.i.d.samples.
 - Annotations
- @Since("1.3.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def normalJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDDRandomRDDs.normalJavaRDDwith the default number of partitions and the default seed.RandomRDDs.normalJavaRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
 
-    def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDDRandomRDDs.normalJavaRDDwith the default seed.RandomRDDs.normalJavaRDDwith the default seed.- Annotations
- @Since("1.1.0")
 
-    def normalJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDDJava-friendly version of RandomRDDs.normalRDD.Java-friendly version of RandomRDDs.normalRDD.- Annotations
- @Since("1.1.0")
 
-    def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]RandomRDDs.normalJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.normalJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
 
-    def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]RandomRDDs.normalJavaVectorRDDwith the default seed.RandomRDDs.normalJavaVectorRDDwith the default seed.- Annotations
- @Since("1.1.0")
 
-    def normalJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]Java-friendly version of RandomRDDs.normalVectorRDD.Java-friendly version of RandomRDDs.normalVectorRDD.- Annotations
- @Since("1.1.0")
 
-    def normalRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]Generates an RDD comprised of i.i.d.samples from the standard normal distribution.Generates an RDD comprised of i.i.d.samples from the standard normal distribution.To transform the distribution in the generated RDD from standard normal to some other normal N(mean, sigma2), useRandomRDDs.normalRDD(sc, n, p, seed).map(v => mean + sigma * v).- sc
- SparkContext used to create the RDD. 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Double] comprised of - i.i.d.samples ~ N(0.0, 1.0).
 - Annotations
- @Since("1.1.0")
 
-    def normalVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the standard normal distribution.Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the standard normal distribution.- sc
- SparkContext used to create the RDD. 
- numRows
- Number of Vectors in the RDD. 
- numCols
- Number of elements in each Vector. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Vector] with vectors containing - i.i.d.samples ~- N(0.0, 1.0).
 - Annotations
- @Since("1.1.0")
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long): JavaDoubleRDDRandomRDDs.poissonJavaRDDwith the default number of partitions and the default seed.RandomRDDs.poissonJavaRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
 
-    def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int): JavaDoubleRDDRandomRDDs.poissonJavaRDDwith the default seed.RandomRDDs.poissonJavaRDDwith the default seed.- Annotations
- @Since("1.1.0")
 
-    def poissonJavaRDD(jsc: JavaSparkContext, mean: Double, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDDJava-friendly version of RandomRDDs.poissonRDD.Java-friendly version of RandomRDDs.poissonRDD.- Annotations
- @Since("1.1.0")
 
-    def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int): JavaRDD[Vector]RandomRDDs.poissonJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.poissonJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
 
-    def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]RandomRDDs.poissonJavaVectorRDDwith the default seed.RandomRDDs.poissonJavaVectorRDDwith the default seed.- Annotations
- @Since("1.1.0")
 
-    def poissonJavaVectorRDD(jsc: JavaSparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]Java-friendly version of RandomRDDs.poissonVectorRDD.Java-friendly version of RandomRDDs.poissonVectorRDD.- Annotations
- @Since("1.1.0")
 
-    def poissonRDD(sc: SparkContext, mean: Double, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]Generates an RDD comprised of i.i.d.samples from the Poisson distribution with the input mean.Generates an RDD comprised of i.i.d.samples from the Poisson distribution with the input mean.- sc
- SparkContext used to create the RDD. 
- mean
- Mean, or lambda, for the Poisson distribution. 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Double] comprised of - i.i.d.samples ~ Pois(mean).
 - Annotations
- @Since("1.1.0")
 
-    def poissonVectorRDD(sc: SparkContext, mean: Double, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the Poisson distribution with the input mean.Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the Poisson distribution with the input mean.- sc
- SparkContext used to create the RDD. 
- mean
- Mean, or lambda, for the Poisson distribution. 
- numRows
- Number of Vectors in the RDD. 
- numCols
- Number of elements in each Vector. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism)
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Vector] with vectors containing - i.i.d.samples ~ Pois(mean).
 - Annotations
- @Since("1.1.0")
 
-    def randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long): JavaRDD[T]RandomRDDs.randomJavaRDDwith the default seed & numPartitionsRandomRDDs.randomJavaRDDwith the default seed & numPartitions- Annotations
- @Since("1.6.0")
 
-    def randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int): JavaRDD[T]RandomRDDs.randomJavaRDDwith the default seed.RandomRDDs.randomJavaRDDwith the default seed.- Annotations
- @Since("1.6.0")
 
-    def randomJavaRDD[T](jsc: JavaSparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int, seed: Long): JavaRDD[T]Generates an RDD comprised of i.i.d.samples produced by the input RandomDataGenerator.Generates an RDD comprised of i.i.d.samples produced by the input RandomDataGenerator.- jsc
- JavaSparkContext used to create the RDD. 
- generator
- RandomDataGenerator used to populate the RDD. 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[T] comprised of - i.i.d.samples produced by generator.
 - Annotations
- @Since("1.6.0")
 
-    def randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int): JavaRDD[Vector]RandomRDDs.randomJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.randomJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.6.0")
 
-    def randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]:: RandomRDDs.randomJavaVectorRDDwith the default seed.:: RandomRDDs.randomJavaVectorRDDwith the default seed.- Annotations
- @Since("1.6.0")
 
-    def randomJavaVectorRDD(jsc: JavaSparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]Java-friendly version of RandomRDDs.randomVectorRDD.Java-friendly version of RandomRDDs.randomVectorRDD.- Annotations
- @Since("1.6.0")
 
-    def randomRDD[T](sc: SparkContext, generator: RandomDataGenerator[T], size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong())(implicit arg0: ClassTag[T]): RDD[T]Generates an RDD comprised of i.i.d.samples produced by the input RandomDataGenerator.Generates an RDD comprised of i.i.d.samples produced by the input RandomDataGenerator.- sc
- SparkContext used to create the RDD. 
- generator
- RandomDataGenerator used to populate the RDD. 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[T] comprised of - i.i.d.samples produced by generator.
 - Annotations
- @Since("1.1.0")
 
-    def randomVectorRDD(sc: SparkContext, generator: RandomDataGenerator[Double], numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]Generates an RDD[Vector] with vectors containing i.i.d.samples produced by the input RandomDataGenerator.Generates an RDD[Vector] with vectors containing i.i.d.samples produced by the input RandomDataGenerator.- sc
- SparkContext used to create the RDD. 
- generator
- RandomDataGenerator used to populate the RDD. 
- numRows
- Number of Vectors in the RDD. 
- numCols
- Number of elements in each Vector. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Vector] with vectors containing - i.i.d.samples produced by generator.
 - Annotations
- @Since("1.1.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def uniformJavaRDD(jsc: JavaSparkContext, size: Long): JavaDoubleRDDRandomRDDs.uniformJavaRDDwith the default number of partitions and the default seed.RandomRDDs.uniformJavaRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
 
-    def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int): JavaDoubleRDDRandomRDDs.uniformJavaRDDwith the default seed.RandomRDDs.uniformJavaRDDwith the default seed.- Annotations
- @Since("1.1.0")
 
-    def uniformJavaRDD(jsc: JavaSparkContext, size: Long, numPartitions: Int, seed: Long): JavaDoubleRDDJava-friendly version of RandomRDDs.uniformRDD.Java-friendly version of RandomRDDs.uniformRDD.- Annotations
- @Since("1.1.0")
 
-    def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int): JavaRDD[Vector]RandomRDDs.uniformJavaVectorRDDwith the default number of partitions and the default seed.RandomRDDs.uniformJavaVectorRDDwith the default number of partitions and the default seed.- Annotations
- @Since("1.1.0")
 
-    def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int): JavaRDD[Vector]RandomRDDs.uniformJavaVectorRDDwith the default seed.RandomRDDs.uniformJavaVectorRDDwith the default seed.- Annotations
- @Since("1.1.0")
 
-    def uniformJavaVectorRDD(jsc: JavaSparkContext, numRows: Long, numCols: Int, numPartitions: Int, seed: Long): JavaRDD[Vector]Java-friendly version of RandomRDDs.uniformVectorRDD.Java-friendly version of RandomRDDs.uniformVectorRDD.- Annotations
- @Since("1.1.0")
 
-    def uniformRDD(sc: SparkContext, size: Long, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Double]Generates an RDD comprised of i.i.d.samples from the uniform distributionU(0.0, 1.0).Generates an RDD comprised of i.i.d.samples from the uniform distributionU(0.0, 1.0).To transform the distribution in the generated RDD from U(0.0, 1.0)toU(a, b), useRandomRDDs.uniformRDD(sc, n, p, seed).map(v => a + (b - a) * v).- sc
- SparkContext used to create the RDD. 
- size
- Size of the RDD. 
- numPartitions
- Number of partitions in the RDD (default: - sc.defaultParallelism).
- seed
- Random seed (default: a random long integer). 
- returns
- RDD[Double] comprised of - i.i.d.samples ~- U(0.0, 1.0).
 - Annotations
- @Since("1.1.0")
 
-    def uniformVectorRDD(sc: SparkContext, numRows: Long, numCols: Int, numPartitions: Int = 0, seed: Long = Utils.random.nextLong()): RDD[Vector]Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the uniform distribution onU(0.0, 1.0).Generates an RDD[Vector] with vectors containing i.i.d.samples drawn from the uniform distribution onU(0.0, 1.0).- sc
- SparkContext used to create the RDD. 
- numRows
- Number of Vectors in the RDD. 
- numCols
- Number of elements in each Vector. 
- numPartitions
- Number of partitions in the RDD. 
- seed
- Seed for the RNG that generates the seed for the generator in each partition. 
- returns
- RDD[Vector] with vectors containing i.i.d samples ~ - U(0.0, 1.0).
 - Annotations
- @Since("1.1.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)