class ALS extends Serializable with Logging
Alternating Least Squares matrix factorization.
ALS attempts to estimate the ratings matrix R as the product of two lower-rank matrices,
X and Y, i.e. X * Yt = R. Typically these approximations are called 'factor' matrices.
The general approach is iterative. During each iteration, one of the factor matrices is held
constant, while the other is solved for using least squares. The newly-solved factor matrix is
then held constant while solving for the other factor matrix.
This is a blocked implementation of the ALS factorization algorithm that groups the two sets of factors (referred to as "users" and "products") into blocks and reduces communication by only sending one copy of each user vector to each product block on each iteration, and only for the product blocks that need that user's feature vector. This is achieved by precomputing some information about the ratings matrix to determine the "out-links" of each user (which blocks of products it will contribute to) and "in-link" information for each product (which of the feature vectors it receives from each user block it will depend on). This allows us to send only an array of feature vectors between each user block and product block, and have the product block find the users' ratings and update the products based on these messages.
For implicit preference data, the algorithm used is based on "Collaborative Filtering for Implicit Feedback Datasets", available at here, adapted for the blocked approach used here.
Essentially instead of finding the low-rank approximations to the rating matrix R,
this finds the approximations for a preference matrix P where the elements of P are 1 if
r > 0 and 0 if r <= 0. The ratings then act as 'confidence' values related to strength of
indicated user
preferences rather than explicit ratings given to items.
Note: the input rating RDD to the ALS implementation should be deterministic.
Nondeterministic data can cause failure during fitting ALS model.
For example, an order-sensitive operation like sampling after a repartition makes RDD
output nondeterministic, like rdd.repartition(2).sample(false, 0.5, 1618).
Checkpointing sampled RDD or adding a sort before sampling can help make the RDD
deterministic.
- Annotations
- @Since("0.8.0")
- Source
- ALS.scala
- Alphabetic
- By Inheritance
- ALS
- Logging
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new ALS()Constructs an ALS instance with default parameters: {numBlocks: -1, rank: 10, iterations: 10, lambda: 0.01, implicitPrefs: false, alpha: 1.0}. Constructs an ALS instance with default parameters: {numBlocks: -1, rank: 10, iterations: 10, lambda: 0.01, implicitPrefs: false, alpha: 1.0}. - Annotations
- @Since("0.8.0")
 
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def run(ratings: JavaRDD[Rating]): MatrixFactorizationModelJava-friendly version of ALS.run.Java-friendly version of ALS.run.- Annotations
- @Since("1.3.0")
 
-    def run(ratings: RDD[Rating]): MatrixFactorizationModelRun ALS with the configured parameters on an input RDD of Rating objects. Run ALS with the configured parameters on an input RDD of Rating objects. Returns a MatrixFactorizationModel with feature vectors for each user and product. - Annotations
- @Since("0.8.0")
 
-    def setAlpha(alpha: Double): ALS.this.typeSets the constant used in computing confidence in implicit ALS. Sets the constant used in computing confidence in implicit ALS. Default: 1.0. - Annotations
- @Since("0.8.1")
 
-    def setBlocks(numBlocks: Int): ALS.this.typeSet the number of blocks for both user blocks and product blocks to parallelize the computation into; pass -1 for an auto-configured number of blocks. Set the number of blocks for both user blocks and product blocks to parallelize the computation into; pass -1 for an auto-configured number of blocks. Default: -1. - Annotations
- @Since("0.8.0")
 
-    def setCheckpointInterval(checkpointInterval: Int): ALS.this.typeSet period (in iterations) between checkpoints (default = 10). Set period (in iterations) between checkpoints (default = 10). Checkpointing helps with recovery (when nodes fail) and StackOverflow exceptions caused by long lineage. It also helps with eliminating temporary shuffle files on disk, which can be important when there are many ALS iterations. If the checkpoint directory is not set in org.apache.spark.SparkContext, this setting is ignored. - Annotations
- @Since("1.4.0")
 
-    def setFinalRDDStorageLevel(storageLevel: StorageLevel): ALS.this.typeSets storage level for final RDDs (user/product used in MatrixFactorizationModel). Sets storage level for final RDDs (user/product used in MatrixFactorizationModel). The default value is MEMORY_AND_DISK. Users can change it to a serialized storage, e.g.MEMORY_AND_DISK_SERand setspark.rdd.compresstotrueto reduce the space requirement, at the cost of speed.- Annotations
- @Since("1.3.0")
 
-    def setImplicitPrefs(implicitPrefs: Boolean): ALS.this.typeSets whether to use implicit preference. Sets whether to use implicit preference. Default: false. - Annotations
- @Since("0.8.1")
 
-    def setIntermediateRDDStorageLevel(storageLevel: StorageLevel): ALS.this.typeSets storage level for intermediate RDDs (user/product in/out links). Sets storage level for intermediate RDDs (user/product in/out links). The default value is MEMORY_AND_DISK. Users can change it to a serialized storage, e.g.,MEMORY_AND_DISK_SERand setspark.rdd.compresstotrueto reduce the space requirement, at the cost of speed.- Annotations
- @Since("1.1.0")
 
-    def setIterations(iterations: Int): ALS.this.typeSet the number of iterations to run. Set the number of iterations to run. Default: 10. - Annotations
- @Since("0.8.0")
 
-    def setLambda(lambda: Double): ALS.this.typeSet the regularization parameter, lambda. Set the regularization parameter, lambda. Default: 0.01. - Annotations
- @Since("0.8.0")
 
-    def setNonnegative(b: Boolean): ALS.this.typeSet whether the least-squares problems solved at each iteration should have nonnegativity constraints. Set whether the least-squares problems solved at each iteration should have nonnegativity constraints. - Annotations
- @Since("1.1.0")
 
-    def setProductBlocks(numProductBlocks: Int): ALS.this.typeSet the number of product blocks to parallelize the computation. Set the number of product blocks to parallelize the computation. - Annotations
- @Since("1.1.0")
 
-    def setRank(rank: Int): ALS.this.typeSet the rank of the feature matrices computed (number of features). Set the rank of the feature matrices computed (number of features). Default: 10. - Annotations
- @Since("0.8.0")
 
-    def setSeed(seed: Long): ALS.this.typeSets a random seed to have deterministic results. Sets a random seed to have deterministic results. - Annotations
- @Since("1.0.0")
 
-    def setUserBlocks(numUserBlocks: Int): ALS.this.typeSet the number of user blocks to parallelize the computation. Set the number of user blocks to parallelize the computation. - Annotations
- @Since("1.1.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)