class Strategy extends Serializable
Stores all the configuration options for tree construction
- Annotations
- @Since("1.0.0")
- Source
- Strategy.scala
- Alphabetic
- By Inheritance
- Strategy
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClasses: Int, maxBins: Int, categoricalFeaturesInfo: Map[Integer, Integer])Java-friendly constructor for org.apache.spark.mllib.tree.configuration.Strategy Java-friendly constructor for org.apache.spark.mllib.tree.configuration.Strategy - Annotations
- @Since("1.1.0")
 
-    new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClasses: Int, maxBins: Int, quantileCalculationStrategy: QuantileStrategy.QuantileStrategy, categoricalFeaturesInfo: Map[Int, Int], minInstancesPerNode: Int, minInfoGain: Double, maxMemoryInMB: Int, subsamplingRate: Double, useNodeIdCache: Boolean, checkpointInterval: Int)Backwards compatible constructor for org.apache.spark.mllib.tree.configuration.Strategy Backwards compatible constructor for org.apache.spark.mllib.tree.configuration.Strategy - Annotations
- @Since("1.0.0")
 
-    new Strategy(algo: Algo.Algo, impurity: Impurity, maxDepth: Int, numClasses: Int = 2, maxBins: Int = 32, quantileCalculationStrategy: QuantileStrategy.QuantileStrategy = Sort, categoricalFeaturesInfo: Map[Int, Int] = Map[Int, Int](), minInstancesPerNode: Int = 1, minInfoGain: Double = 0.0, maxMemoryInMB: Int = 256, subsamplingRate: Double = 1, useNodeIdCache: Boolean = false, checkpointInterval: Int = 10, minWeightFractionPerNode: Double = 0.0, bootstrap: Boolean = false)- algo
- Learning goal. Supported: - org.apache.spark.mllib.tree.configuration.Algo.Classification,- org.apache.spark.mllib.tree.configuration.Algo.Regression
- impurity
- Criterion used for information gain calculation. Supported for Classification: org.apache.spark.mllib.tree.impurity.Gini, org.apache.spark.mllib.tree.impurity.Entropy. Supported for Regression: org.apache.spark.mllib.tree.impurity.Variance. 
- maxDepth
- Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). 
- numClasses
- Number of classes for classification. (Ignored for regression.) Default value is 2 (binary classification). 
- maxBins
- Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. 
- quantileCalculationStrategy
- Algorithm for calculating quantiles. Supported: - org.apache.spark.mllib.tree.configuration.QuantileStrategy.Sort
- categoricalFeaturesInfo
- A map storing information about the categorical variables and the number of discrete values they take. An entry (n to k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}. 
- minInstancesPerNode
- Minimum number of instances each child must have after split. Default value is 1. If a split cause left or right child to have less than minInstancesPerNode, this split will not be considered as a valid split. 
- minInfoGain
- Minimum information gain a split must get. Default value is 0.0. If a split has less information gain than minInfoGain, this split will not be considered as a valid split. 
- maxMemoryInMB
- Maximum memory in MB allocated to histogram aggregation. Default value is 256 MB. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. 
- subsamplingRate
- Fraction of the training data used for learning decision tree. 
- useNodeIdCache
- If this is true, instead of passing trees to executors, the algorithm will maintain a separate RDD of node Id cache for each row. 
- checkpointInterval
- How often to checkpoint when the node Id cache gets updated. E.g. 10 means that the cache will get checkpointed every 10 updates. If the checkpoint directory is not set in org.apache.spark.SparkContext, this setting is ignored. 
 - Annotations
- @Since("1.3.0")
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    var algo: Algo.Algo- Annotations
- @Since("1.0.0")
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    var categoricalFeaturesInfo: Map[Int, Int]- Annotations
- @Since("1.0.0")
 
-    var checkpointInterval: Int- Annotations
- @Since("1.2.0")
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def copy: StrategyReturns a shallow copy of this instance. Returns a shallow copy of this instance. - Annotations
- @Since("1.2.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def getAlgo(): Algo.Algo- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def getCategoricalFeaturesInfo(): Map[Int, Int]- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def getCheckpointInterval(): Int- Annotations
- @Since("1.2.0") @BeanProperty()
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def getImpurity(): Impurity- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def getMaxBins(): Int- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def getMaxDepth(): Int- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def getMaxMemoryInMB(): Int- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def getMinInfoGain(): Double- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def getMinInstancesPerNode(): Int- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def getMinWeightFractionPerNode(): Double- Annotations
- @Since("3.0.0") @BeanProperty()
 
-    def getNumClasses(): Int- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def getQuantileCalculationStrategy(): QuantileStrategy.QuantileStrategy- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def getSubsamplingRate(): Double- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def getUseNodeIdCache(): Boolean- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    var impurity: Impurity- Annotations
- @Since("1.0.0")
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def isMulticlassClassification: Boolean- Annotations
- @Since("1.2.0")
 
-    def isMulticlassWithCategoricalFeatures: Boolean- Annotations
- @Since("1.2.0")
 
-    var maxBins: Int- Annotations
- @Since("1.0.0")
 
-    var maxDepth: Int- Annotations
- @Since("1.0.0")
 
-    var maxMemoryInMB: Int- Annotations
- @Since("1.0.0")
 
-    var minInfoGain: Double- Annotations
- @Since("1.2.0")
 
-    var minInstancesPerNode: Int- Annotations
- @Since("1.2.0")
 
-    var minWeightFractionPerNode: Double- Annotations
- @Since("3.0.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    var numClasses: Int- Annotations
- @Since("1.2.0")
 
-    var quantileCalculationStrategy: QuantileStrategy.QuantileStrategy- Annotations
- @Since("1.0.0")
 
-    def setAlgo(algo: String): UnitSets Algorithm using a String. Sets Algorithm using a String. - Annotations
- @Since("1.2.0")
 
-    def setAlgo(arg0: Algo.Algo): Unit- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def setCategoricalFeaturesInfo(categoricalFeaturesInfo: Map[Integer, Integer]): UnitSets categoricalFeaturesInfo using a Java Map. Sets categoricalFeaturesInfo using a Java Map. - Annotations
- @Since("1.2.0")
 
-    def setCategoricalFeaturesInfo(arg0: Map[Int, Int]): Unit- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def setCheckpointInterval(arg0: Int): Unit- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def setImpurity(arg0: Impurity): Unit- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def setMaxBins(arg0: Int): Unit- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def setMaxDepth(arg0: Int): Unit- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def setMaxMemoryInMB(arg0: Int): Unit- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def setMinInfoGain(arg0: Double): Unit- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def setMinInstancesPerNode(arg0: Int): Unit- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def setMinWeightFractionPerNode(arg0: Double): Unit- Annotations
- @Since("3.0.0") @BeanProperty()
 
-    def setNumClasses(arg0: Int): Unit- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def setQuantileCalculationStrategy(arg0: QuantileStrategy.QuantileStrategy): Unit- Annotations
- @Since("1.0.0") @BeanProperty()
 
-    def setSubsamplingRate(arg0: Double): Unit- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    def setUseNodeIdCache(arg0: Boolean): Unit- Annotations
- @Since("1.2.0") @BeanProperty()
 
-    var subsamplingRate: Double- Annotations
- @Since("1.2.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    var useNodeIdCache: Boolean- Annotations
- @Since("1.2.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)