abstract class DataFrameNaFunctions extends AnyRef
Functionality for working with missing data in DataFrames.
- Annotations
- @Stable()
- Source
- DataFrameNaFunctions.scala
- Since
- 1.3.1 
- Alphabetic
- By Inheritance
- DataFrameNaFunctions
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-  new DataFrameNaFunctions()
Abstract Value Members
-   abstract  def drop(minNonNulls: Option[Int], cols: Seq[String]): DataFrame- Attributes
- protected
 
-   abstract  def drop(minNonNulls: Option[Int]): DataFrame- Attributes
- protected
 
-   abstract  def fill(value: Boolean, cols: Seq[String]): DataFrame(Scala-specific) Returns a new DataFramethat replaces null values in specified boolean columns.(Scala-specific) Returns a new DataFramethat replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
- 2.3.0 
 
-   abstract  def fill(value: Boolean): DataFrameReturns a new DataFramethat replaces null values in boolean columns withvalue.Returns a new DataFramethat replaces null values in boolean columns withvalue.- Since
- 2.3.0 
 
-   abstract  def fill(value: String, cols: Seq[String]): DataFrame(Scala-specific) Returns a new DataFramethat replaces null values in specified string columns.(Scala-specific) Returns a new DataFramethat replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
- 1.3.1 
 
-   abstract  def fill(value: Double, cols: Seq[String]): DataFrame(Scala-specific) Returns a new DataFramethat replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
- 1.3.1 
 
-   abstract  def fill(value: Long, cols: Seq[String]): DataFrame(Scala-specific) Returns a new DataFramethat replaces null or NaN values in specified numeric columns.(Scala-specific) Returns a new DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
- 2.2.0 
 
-   abstract  def fill(value: String): DataFrameReturns a new DataFramethat replaces null values in string columns withvalue.Returns a new DataFramethat replaces null values in string columns withvalue.- Since
- 1.3.1 
 
-   abstract  def fill(value: Double): DataFrameReturns a new DataFramethat replaces null or NaN values in numeric columns withvalue.Returns a new DataFramethat replaces null or NaN values in numeric columns withvalue.- Since
- 1.3.1 
 
-   abstract  def fill(value: Long): DataFrameReturns a new DataFramethat replaces null or NaN values in numeric columns withvalue.Returns a new DataFramethat replaces null or NaN values in numeric columns withvalue.- Since
- 2.2.0 
 
-   abstract  def fillMap(values: Seq[(String, Any)]): DataFrame- Attributes
- protected
 
-   abstract  def replace[T](cols: Seq[String], replacement: Map[T, T]): DataFrame(Scala-specific) Replaces values matching keys in replacementmap.(Scala-specific) Replaces values matching keys in replacementmap.// Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace("height" :: "weight" :: Nil, Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace("firstname" :: "lastname" :: Nil, Map("UNKNOWN" -> "unnamed")); - cols
- list of columns to apply the value replacement. If - colis "*", replacement is applied on all string, numeric or boolean columns.
- replacement
- value replacement map. Key and value of - replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
 - Since
- 1.3.1 
 
-   abstract  def replace[T](col: String, replacement: Map[T, T]): DataFrame(Scala-specific) Replaces values matching keys in replacementmap.(Scala-specific) Replaces values matching keys in replacementmap.// Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", Map(1.0 -> 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", Map("UNKNOWN" -> "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", Map("UNKNOWN" -> "unnamed")); - col
- name of the column to apply the value replacement. If - colis "*", replacement is applied on all string, numeric or boolean columns.
- replacement
- value replacement map. Key and value of - replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
 - Since
- 1.3.1 
 
Concrete Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def drop(minNonNulls: Int, cols: Seq[String]): DataFrame(Scala-specific) Returns a new DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.(Scala-specific) Returns a new DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.- Since
- 1.3.1 
 
-    def drop(minNonNulls: Int, cols: Array[String]): DataFrameReturns a new DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.Returns a new DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values in the specified columns.- Since
- 1.3.1 
 
-    def drop(minNonNulls: Int): DataFrameReturns a new DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values.Returns a new DataFramethat drops rows containing less thanminNonNullsnon-null and non-NaN values.- Since
- 1.3.1 
 
-    def drop(how: String, cols: Seq[String]): DataFrame(Scala-specific) Returns a new DataFramethat drops rows containing null or NaN values in the specified columns.(Scala-specific) Returns a new DataFramethat drops rows containing null or NaN values in the specified columns.If howis "any", then drop rows containing any null or NaN values in the specified columns. Ifhowis "all", then drop rows only if every specified column is null or NaN for that row.- Since
- 1.3.1 
 
-    def drop(how: String, cols: Array[String]): DataFrameReturns a new DataFramethat drops rows containing null or NaN values in the specified columns.Returns a new DataFramethat drops rows containing null or NaN values in the specified columns.If howis "any", then drop rows containing any null or NaN values in the specified columns. Ifhowis "all", then drop rows only if every specified column is null or NaN for that row.- Since
- 1.3.1 
 
-    def drop(cols: Seq[String]): DataFrame(Scala-specific) Returns a new DataFramethat drops rows containing any null or NaN values in the specified columns.(Scala-specific) Returns a new DataFramethat drops rows containing any null or NaN values in the specified columns.- Since
- 1.3.1 
 
-    def drop(cols: Array[String]): DataFrameReturns a new DataFramethat drops rows containing any null or NaN values in the specified columns.Returns a new DataFramethat drops rows containing any null or NaN values in the specified columns.- Since
- 1.3.1 
 
-    def drop(how: String): DataFrameReturns a new DataFramethat drops rows containing null or NaN values.Returns a new DataFramethat drops rows containing null or NaN values.If howis "any", then drop rows containing any null or NaN values. Ifhowis "all", then drop rows only if every column is null or NaN for that row.- Since
- 1.3.1 
 
-    def drop(): DataFrameReturns a new DataFramethat drops rows containing any null or NaN values.Returns a new DataFramethat drops rows containing any null or NaN values.- Since
- 1.3.1 
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def fill(valueMap: Map[String, Any]): DataFrame(Scala-specific) Returns a new DataFramethat replaces null values.(Scala-specific) Returns a new DataFramethat replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type: Int,Long,Float,Double,String,Boolean. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0. df.na.fill(Map( "A" -> "unknown", "B" -> 1.0 )) - Since
- 1.3.1 
 
-    def fill(valueMap: Map[String, Any]): DataFrameReturns a new DataFramethat replaces null values.Returns a new DataFramethat replaces null values.The key of the map is the column name, and the value of the map is the replacement value. The value must be of the following type: Integer,Long,Float,Double,String,Boolean. Replacement values are cast to the column data type.For example, the following replaces null values in column "A" with string "unknown", and null values in column "B" with numeric value 1.0. import com.google.common.collect.ImmutableMap; df.na.fill(ImmutableMap.of("A", "unknown", "B", 1.0)); - Since
- 1.3.1 
 
-    def fill(value: Boolean, cols: Array[String]): DataFrameReturns a new DataFramethat replaces null values in specified boolean columns.Returns a new DataFramethat replaces null values in specified boolean columns. If a specified column is not a boolean column, it is ignored.- Since
- 2.3.0 
 
-    def fill(value: String, cols: Array[String]): DataFrameReturns a new DataFramethat replaces null values in specified string columns.Returns a new DataFramethat replaces null values in specified string columns. If a specified column is not a string column, it is ignored.- Since
- 1.3.1 
 
-    def fill(value: Double, cols: Array[String]): DataFrameReturns a new DataFramethat replaces null or NaN values in specified numeric columns.Returns a new DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
- 1.3.1 
 
-    def fill(value: Long, cols: Array[String]): DataFrameReturns a new DataFramethat replaces null or NaN values in specified numeric columns.Returns a new DataFramethat replaces null or NaN values in specified numeric columns. If a specified column is not a numeric column, it is ignored.- Since
- 2.2.0 
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def replace[T](cols: Array[String], replacement: Map[T, T]): DataFrameReplaces values matching keys in replacementmap with the corresponding values.Replaces values matching keys in replacementmap with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height" and "weight". df.na.replace(new String[] {"height", "weight"}, ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "firstname" and "lastname". df.na.replace(new String[] {"firstname", "lastname"}, ImmutableMap.of("UNKNOWN", "unnamed")); - cols
- list of columns to apply the value replacement. If - colis "*", replacement is applied on all string, numeric or boolean columns.
- replacement
- value replacement map. Key and value of - replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
 - Since
- 1.3.1 
 
-    def replace[T](col: String, replacement: Map[T, T]): DataFrameReplaces values matching keys in replacementmap with the corresponding values.Replaces values matching keys in replacementmap with the corresponding values.import com.google.common.collect.ImmutableMap; // Replaces all occurrences of 1.0 with 2.0 in column "height". df.na.replace("height", ImmutableMap.of(1.0, 2.0)); // Replaces all occurrences of "UNKNOWN" with "unnamed" in column "name". df.na.replace("name", ImmutableMap.of("UNKNOWN", "unnamed")); // Replaces all occurrences of "UNKNOWN" with "unnamed" in all string columns. df.na.replace("*", ImmutableMap.of("UNKNOWN", "unnamed")); - col
- name of the column to apply the value replacement. If - colis "*", replacement is applied on all string, numeric or boolean columns.
- replacement
- value replacement map. Key and value of - replacementmap must have the same type, and can only be doubles, strings or booleans. The map value can have nulls.
 - Since
- 1.3.1 
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)