trait CachedBatchSerializer extends Serializable
Provides APIs that handle transformations of SQL data associated with the cache/persist APIs.
- Annotations
- @DeveloperApi() @Since("3.1.0")
- Source
- CachedBatchSerializer.scala
- Alphabetic
- By Inheritance
- CachedBatchSerializer
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Abstract Value Members
-   abstract  def buildFilter(predicates: Seq[Expression], cachedAttributes: Seq[Attribute]): (Int, Iterator[CachedBatch]) => Iterator[CachedBatch]Builds a function that can be used to filter batches prior to being decompressed. Builds a function that can be used to filter batches prior to being decompressed. In most cases extending SimpleMetricsCachedBatchSerializer will provide the filter logic necessary. You will need to provide metrics for this to work. SimpleMetricsCachedBatch provides the APIs to hold those metrics and explains the metrics used, really just min and max. Note that this is intended to skip batches that are not needed, and the actual filtering of individual rows is handled later. - predicates
- the set of expressions to use for filtering. 
- cachedAttributes
- the schema/attributes of the data that is cached. This can be helpful if you don't store it with the data. 
- returns
- a function that takes the partition id and the iterator of batches in the partition. It returns an iterator of batches that should be decompressed. 
 
-   abstract  def convertCachedBatchToColumnarBatch(input: RDD[CachedBatch], cacheAttributes: Seq[Attribute], selectedAttributes: Seq[Attribute], conf: SQLConf): RDD[ColumnarBatch]Convert the cached data into a ColumnarBatch. Convert the cached data into a ColumnarBatch. This currently is only used if supportsColumnarOutput()returns true for the associated schema, but there are other checks that can force row based output. One of the main advantages of doing columnar output over row based output is that the code generation is more standard and can be combined with code generation for downstream operations.- input
- the cached batches that should be converted. 
- cacheAttributes
- the attributes of the data in the batch. 
- selectedAttributes
- the fields that should be loaded from the data and the order they should appear in the output batch. 
- conf
- the configuration for the job. 
- returns
- an RDD of the input cached batches transformed into the ColumnarBatch format. 
 
-   abstract  def convertCachedBatchToInternalRow(input: RDD[CachedBatch], cacheAttributes: Seq[Attribute], selectedAttributes: Seq[Attribute], conf: SQLConf): RDD[InternalRow]Convert the cached batch into InternalRows.Convert the cached batch into InternalRows. If you want this to be performant, code generation is advised.- input
- the cached batches that should be converted. 
- cacheAttributes
- the attributes of the data in the batch. 
- selectedAttributes
- the field that should be loaded from the data and the order they should appear in the output rows. 
- conf
- the configuration for the job. 
- returns
- RDD of the rows that were stored in the cached batches. 
 
-   abstract  def convertColumnarBatchToCachedBatch(input: RDD[ColumnarBatch], schema: Seq[Attribute], storageLevel: StorageLevel, conf: SQLConf): RDD[CachedBatch]Convert an RDD[ColumnarBatch]into anRDD[CachedBatch]in preparation for caching the data.Convert an RDD[ColumnarBatch]into anRDD[CachedBatch]in preparation for caching the data. This will only be called ifsupportsColumnarInput()returned true for the given schema and the plan up to this point would could produce columnar output without modifying it.- input
- the input - RDDto be converted.
- schema
- the schema of the data being stored. 
- storageLevel
- where the data will be stored. 
- conf
- the config for the query. 
- returns
- The data converted into a format more suitable for caching. 
 
-   abstract  def convertInternalRowToCachedBatch(input: RDD[InternalRow], schema: Seq[Attribute], storageLevel: StorageLevel, conf: SQLConf): RDD[CachedBatch]Convert an RDD[InternalRow]into anRDD[CachedBatch]in preparation for caching the data.Convert an RDD[InternalRow]into anRDD[CachedBatch]in preparation for caching the data.- input
- the input - RDDto be converted.
- schema
- the schema of the data being stored. 
- storageLevel
- where the data will be stored. 
- conf
- the config for the query. 
- returns
- The data converted into a format more suitable for caching. 
 
-   abstract  def supportsColumnarInput(schema: Seq[Attribute]): BooleanCan convertColumnarBatchToCachedBatch()be called instead ofconvertInternalRowToCachedBatch()for this given schema? True if it can and false if it cannot.Can convertColumnarBatchToCachedBatch()be called instead ofconvertInternalRowToCachedBatch()for this given schema? True if it can and false if it cannot. Columnar input is only supported if the plan could produce columnar output. Currently this is mostly supported by input formats like parquet and orc, but more operations are likely to be supported soon.- schema
- the schema of the data being stored. 
- returns
- True if columnar input can be supported, else false. 
 
-   abstract  def supportsColumnarOutput(schema: StructType): BooleanCan convertCachedBatchToColumnarBatch()be called instead ofconvertCachedBatchToInternalRow()for this given schema? True if it can and false if it cannot.Can convertCachedBatchToColumnarBatch()be called instead ofconvertCachedBatchToInternalRow()for this given schema? True if it can and false if it cannot. Columnar output is typically preferred because it is more efficient. Note thatconvertCachedBatchToInternalRow()must always be supported as there are other checks that can force row based output.- schema
- the schema of the data being checked. 
- returns
- true if columnar output should be used for this schema, else false. 
 
Concrete Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def convertToColumnarPlanIfPossible(plan: SparkPlan): SparkPlanAttempt to convert a query plan to its columnar equivalence for columnar caching. Attempt to convert a query plan to its columnar equivalence for columnar caching. Called on the query plan that is about to be cached once supportsColumnarInput returns true on its output schema. The default implementation works by stripping the topmost columnar-to-row transition to expose the columnar-based plan to the serializer. - plan
- The plan to convert. 
- returns
- The output plan. Could either be a columnar plan if the input plan is convertible, or the input plan unchanged if no viable conversion can be done. 
 - Annotations
- @DeveloperApi() @Since("4.1.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def vectorTypes(attributes: Seq[Attribute], conf: SQLConf): Option[Seq[String]]The exact java types of the columns that are output in columnar processing mode. The exact java types of the columns that are output in columnar processing mode. This is a performance optimization for code generation and is optional. - attributes
- the attributes to be output. 
- conf
- the config for the query that will read the data. 
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)