public class LinearSVCSummaryImpl extends Object implements LinearSVCSummary
param: predictions dataframe output by the model's transform
method.
param: scoreCol field in "predictions" which gives the rawPrediction of each instance.
param: predictionCol field in "predictions" which gives the prediction for a data instance as a
double.
param: labelCol field in "predictions" which gives the true label of each instance.
param: weightCol field in "predictions" which gives the weight of each instance.
Constructor and Description |
---|
LinearSVCSummaryImpl(Dataset<Row> predictions,
String scoreCol,
String predictionCol,
String labelCol,
String weightCol) |
Modifier and Type | Method and Description |
---|---|
double |
areaUnderROC()
Computes the area under the receiver operating characteristic (ROC) curve.
|
Dataset<Row> |
fMeasureByThreshold()
Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0.
|
String |
labelCol()
Field in "predictions" which gives the true label of each instance (if available).
|
Dataset<Row> |
pr()
Returns the precision-recall curve, which is a Dataframe containing
two fields recall, precision with (0.0, 1.0) prepended to it.
|
Dataset<Row> |
precisionByThreshold()
Returns a dataframe with two fields (threshold, precision) curve.
|
String |
predictionCol()
Field in "predictions" which gives the prediction of each class.
|
Dataset<Row> |
predictions()
Dataframe output by the model's
transform method. |
Dataset<Row> |
recallByThreshold()
Returns a dataframe with two fields (threshold, recall) curve.
|
Dataset<Row> |
roc()
Returns the receiver operating characteristic (ROC) curve,
which is a Dataframe having two fields (FPR, TPR)
with (0.0, 0.0) prepended and (1.0, 1.0) appended to it.
|
String |
scoreCol()
Field in "predictions" which gives the probability or rawPrediction of each class as a
vector.
|
String |
weightCol()
Field in "predictions" which gives the weight of each instance.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
accuracy, falsePositiveRateByLabel, fMeasureByLabel, fMeasureByLabel, labels, precisionByLabel, recallByLabel, truePositiveRateByLabel, weightedFalsePositiveRate, weightedFMeasure, weightedFMeasure, weightedPrecision, weightedRecall, weightedTruePositiveRate
public double areaUnderROC()
BinaryClassificationSummary
areaUnderROC
in interface BinaryClassificationSummary
public Dataset<Row> fMeasureByThreshold()
BinaryClassificationSummary
fMeasureByThreshold
in interface BinaryClassificationSummary
public String labelCol()
ClassificationSummary
labelCol
in interface ClassificationSummary
public Dataset<Row> pr()
BinaryClassificationSummary
pr
in interface BinaryClassificationSummary
public Dataset<Row> precisionByThreshold()
BinaryClassificationSummary
precisionByThreshold
in interface BinaryClassificationSummary
public String predictionCol()
ClassificationSummary
predictionCol
in interface ClassificationSummary
public Dataset<Row> predictions()
ClassificationSummary
transform
method.predictions
in interface ClassificationSummary
public Dataset<Row> recallByThreshold()
BinaryClassificationSummary
recallByThreshold
in interface BinaryClassificationSummary
public Dataset<Row> roc()
BinaryClassificationSummary
roc
in interface BinaryClassificationSummary
public String scoreCol()
BinaryClassificationSummary
scoreCol
in interface BinaryClassificationSummary
public String weightCol()
ClassificationSummary
weightCol
in interface ClassificationSummary