public class LinearRegressionSummary
extends Object
implements scala.Serializable
param: predictions predictions output by the model's transform
method.
param: predictionCol Field in "predictions" which gives the predicted value of the label at
each instance.
param: labelCol Field in "predictions" which gives the true label of each instance.
param: featuresCol Field in "predictions" which gives the features of each instance as a vector.
Modifier and Type | Method and Description |
---|---|
double[] |
coefficientStandardErrors() |
long |
degreesOfFreedom()
Degrees of freedom
|
double[] |
devianceResiduals() |
double |
explainedVariance()
Returns the explained variance regression score.
|
String |
featuresCol() |
String |
labelCol() |
double |
meanAbsoluteError()
Returns the mean absolute error, which is a risk function corresponding to the
expected value of the absolute error loss or l1-norm loss.
|
double |
meanSquaredError()
Returns the mean squared error, which is a risk function corresponding to the
expected value of the squared error loss or quadratic loss.
|
long |
numInstances() |
String |
predictionCol() |
Dataset<Row> |
predictions() |
double[] |
pValues() |
double |
r2()
Returns R^2^, the coefficient of determination.
|
double |
r2adj()
Returns Adjusted R^2^, the adjusted coefficient of determination.
|
Dataset<Row> |
residuals() |
double |
rootMeanSquaredError()
Returns the root mean squared error, which is defined as the square root of
the mean squared error.
|
double[] |
tValues() |
public double[] coefficientStandardErrors()
public long degreesOfFreedom()
public double[] devianceResiduals()
public double explainedVariance()
public String featuresCol()
public String labelCol()
public double meanAbsoluteError()
public double meanSquaredError()
public long numInstances()
public double[] pValues()
public String predictionCol()
public double r2()
public double r2adj()
public double rootMeanSquaredError()
public double[] tValues()