public class DeterministicLevel
extends Object
RDD#compute
returns). This explains how
the output will diff when Spark reruns the tasks for the RDD. There are 3 deterministic levels:
1. DETERMINATE: The RDD output is always the same data set in the same order after a rerun.
2. UNORDERED: The RDD output is always the same data set but the order can be different
after a rerun.
3. INDETERMINATE. The RDD output can be different after a rerun.
Note that, the output of an RDD usually relies on the parent RDDs. When the parent RDD's output is INDETERMINATE, it's very likely the RDD's output is also INDETERMINATE.
Constructor and Description |
---|
DeterministicLevel() |
Modifier and Type | Method and Description |
---|---|
static scala.Enumeration.Value |
apply(int x) |
static scala.Enumeration.Value |
DETERMINATE() |
static scala.Enumeration.Value |
INDETERMINATE() |
static int |
maxId() |
static String |
toString() |
static scala.Enumeration.Value |
UNORDERED() |
static scala.Enumeration.ValueSet |
values() |
static scala.Enumeration.Value |
withName(String s) |
public static scala.Enumeration.Value DETERMINATE()
public static scala.Enumeration.Value UNORDERED()
public static scala.Enumeration.Value INDETERMINATE()
public static String toString()
public static scala.Enumeration.ValueSet values()
public static final int maxId()
public static final scala.Enumeration.Value apply(int x)
public static final scala.Enumeration.Value withName(String s)