public interface CachedBatchSerializer
extends scala.Serializable
Modifier and Type | Method and Description |
---|---|
scala.Function2<Object,scala.collection.Iterator<CachedBatch>,scala.collection.Iterator<CachedBatch>> |
buildFilter(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Expression> predicates,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cachedAttributes)
Builds a function that can be used to filter batches prior to being decompressed.
|
RDD<ColumnarBatch> |
convertCachedBatchToColumnarBatch(RDD<CachedBatch> input,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes,
org.apache.spark.sql.internal.SQLConf conf)
Convert the cached data into a ColumnarBatch.
|
RDD<org.apache.spark.sql.catalyst.InternalRow> |
convertCachedBatchToInternalRow(RDD<CachedBatch> input,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes,
org.apache.spark.sql.internal.SQLConf conf)
Convert the cached batch into
InternalRow s. |
RDD<CachedBatch> |
convertColumnarBatchToCachedBatch(RDD<ColumnarBatch> input,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema,
StorageLevel storageLevel,
org.apache.spark.sql.internal.SQLConf conf)
Convert an
RDD[ColumnarBatch] into an RDD[CachedBatch] in preparation for caching the data. |
RDD<CachedBatch> |
convertInternalRowToCachedBatch(RDD<org.apache.spark.sql.catalyst.InternalRow> input,
scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema,
StorageLevel storageLevel,
org.apache.spark.sql.internal.SQLConf conf)
Convert an
RDD[InternalRow] into an RDD[CachedBatch] in preparation for caching the data. |
boolean |
supportsColumnarInput(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema)
Can
convertColumnarBatchToCachedBatch() be called instead of
convertInternalRowToCachedBatch() for this given schema? True if it can and false if it
cannot. |
boolean |
supportsColumnarOutput(StructType schema)
Can
convertCachedBatchToColumnarBatch() be called instead of
convertCachedBatchToInternalRow() for this given schema? True if it can and false if it
cannot. |
scala.Option<scala.collection.Seq<String>> |
vectorTypes(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> attributes,
org.apache.spark.sql.internal.SQLConf conf)
The exact java types of the columns that are output in columnar processing mode.
|
scala.Function2<Object,scala.collection.Iterator<CachedBatch>,scala.collection.Iterator<CachedBatch>> buildFilter(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Expression> predicates, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cachedAttributes)
SimpleMetricsCachedBatchSerializer
will provide the filter logic
necessary. You will need to provide metrics for this to work. SimpleMetricsCachedBatch
provides the APIs to hold those metrics and explains the metrics used, really just min and max.
Note that this is intended to skip batches that are not needed, and the actual filtering of
individual rows is handled later.predicates
- the set of expressions to use for filtering.cachedAttributes
- the schema/attributes of the data that is cached. This can be helpful
if you don't store it with the data.RDD<ColumnarBatch> convertCachedBatchToColumnarBatch(RDD<CachedBatch> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes, org.apache.spark.sql.internal.SQLConf conf)
supportsColumnarOutput()
returns true for the associated schema, but there are other checks
that can force row based output. One of the main advantages of doing columnar output over row
based output is that the code generation is more standard and can be combined with code
generation for downstream operations.input
- the cached batches that should be converted.cacheAttributes
- the attributes of the data in the batch.selectedAttributes
- the fields that should be loaded from the data and the order they
should appear in the output batch.conf
- the configuration for the job.RDD<org.apache.spark.sql.catalyst.InternalRow> convertCachedBatchToInternalRow(RDD<CachedBatch> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> cacheAttributes, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> selectedAttributes, org.apache.spark.sql.internal.SQLConf conf)
InternalRow
s. If you want this to be performant, code
generation is advised.input
- the cached batches that should be converted.cacheAttributes
- the attributes of the data in the batch.selectedAttributes
- the field that should be loaded from the data and the order they
should appear in the output rows.conf
- the configuration for the job.RDD<CachedBatch> convertColumnarBatchToCachedBatch(RDD<ColumnarBatch> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema, StorageLevel storageLevel, org.apache.spark.sql.internal.SQLConf conf)
RDD[ColumnarBatch]
into an RDD[CachedBatch]
in preparation for caching the data.
This will only be called if supportsColumnarInput()
returned true for the given schema and
the plan up to this point would could produce columnar output without modifying it.input
- the input RDD
to be converted.schema
- the schema of the data being stored.storageLevel
- where the data will be stored.conf
- the config for the query.RDD<CachedBatch> convertInternalRowToCachedBatch(RDD<org.apache.spark.sql.catalyst.InternalRow> input, scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema, StorageLevel storageLevel, org.apache.spark.sql.internal.SQLConf conf)
RDD[InternalRow]
into an RDD[CachedBatch]
in preparation for caching the data.input
- the input RDD
to be converted.schema
- the schema of the data being stored.storageLevel
- where the data will be stored.conf
- the config for the query.boolean supportsColumnarInput(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> schema)
convertColumnarBatchToCachedBatch()
be called instead of
convertInternalRowToCachedBatch()
for this given schema? True if it can and false if it
cannot. Columnar input is only supported if the plan could produce columnar output. Currently
this is mostly supported by input formats like parquet and orc, but more operations are likely
to be supported soon.schema
- the schema of the data being stored.boolean supportsColumnarOutput(StructType schema)
convertCachedBatchToColumnarBatch()
be called instead of
convertCachedBatchToInternalRow()
for this given schema? True if it can and false if it
cannot. Columnar output is typically preferred because it is more efficient. Note that
convertCachedBatchToInternalRow()
must always be supported as there are other checks that
can force row based output.schema
- the schema of the data being checked.scala.Option<scala.collection.Seq<String>> vectorTypes(scala.collection.Seq<org.apache.spark.sql.catalyst.expressions.Attribute> attributes, org.apache.spark.sql.internal.SQLConf conf)
attributes
- the attributes to be output.conf
- the config for the query that will read the data.