Packages

class BisectingKMeansModel extends Model[BisectingKMeansModel] with BisectingKMeansParams with MLWritable with HasTrainingSummary[BisectingKMeansSummary]

Model fitted by BisectingKMeans.

Annotations
@Since( "2.0.0" )
Source
BisectingKMeans.scala
Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. BisectingKMeansModel
  2. HasTrainingSummary
  3. MLWritable
  4. BisectingKMeansParams
  5. HasWeightCol
  6. HasDistanceMeasure
  7. HasPredictionCol
  8. HasSeed
  9. HasFeaturesCol
  10. HasMaxIter
  11. Model
  12. Transformer
  13. PipelineStage
  14. Logging
  15. Params
  16. Serializable
  17. Serializable
  18. Identifiable
  19. AnyRef
  20. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val distanceMeasure: Param[String]

    Param for The distance measure.

    Param for The distance measure. Supported options: 'euclidean' and 'cosine'.

    Definition Classes
    HasDistanceMeasure
  2. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  3. final val k: IntParam

    The desired number of leaf clusters.

    The desired number of leaf clusters. Must be > 1. Default: 4. The actual number could be smaller if there are no divisible leaf clusters.

    Definition Classes
    BisectingKMeansParams
    Annotations
    @Since( "2.0.0" )
  4. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  5. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  6. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  7. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol

Members

  1. final def clear(param: Param[_]): BisectingKMeansModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def clusterCenters: Array[Vector]
    Annotations
    @Since( "2.0.0" )
  3. def copy(extra: ParamMap): BisectingKMeansModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    BisectingKMeansModelModelTransformerPipelineStageParams
    Annotations
    @Since( "2.0.0" )
  4. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  5. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  6. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  7. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  8. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  9. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  10. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  11. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  12. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  13. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  14. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  15. def hasSummary: Boolean

    Indicates whether a training summary exists for this model instance.

    Indicates whether a training summary exists for this model instance.

    Definition Classes
    HasTrainingSummary
    Annotations
    @Since( "3.0.0" )
  16. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  17. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  18. lazy val numFeatures: Int
    Annotations
    @Since( "3.0.0" )
  19. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  20. var parent: Estimator[BisectingKMeansModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  21. def predict(features: Vector): Int
    Annotations
    @Since( "3.0.0" )
  22. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  23. final def set[T](param: Param[T], value: T): BisectingKMeansModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  24. def setParent(parent: Estimator[BisectingKMeansModel]): BisectingKMeansModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  25. def summary: BisectingKMeansSummary

    Gets summary of model on training set.

    Gets summary of model on training set. An exception is thrown if hasSummary is false.

    Definition Classes
    BisectingKMeansModel → HasTrainingSummary
    Annotations
    @Since( "2.1.0" )
  26. def toString(): String
    Definition Classes
    BisectingKMeansModelIdentifiable → AnyRef → Any
    Annotations
    @Since( "3.0.0" )
  27. def transform(dataset: Dataset[_]): DataFrame

    Transforms the input dataset.

    Transforms the input dataset.

    Definition Classes
    BisectingKMeansModelTransformer
    Annotations
    @Since( "2.0.0" )
  28. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  29. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  30. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    BisectingKMeansModelPipelineStage
    Annotations
    @Since( "2.0.0" )
  31. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    BisectingKMeansModelIdentifiable
    Annotations
    @Since( "2.0.0" )
  32. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    BisectingKMeansModelMLWritable
    Annotations
    @Since( "2.0.0" )
  33. def computeCost(dataset: Dataset[_]): Double

    Computes the sum of squared distances between the input points and their corresponding cluster centers.

    Computes the sum of squared distances between the input points and their corresponding cluster centers.

    Annotations
    @Since( "2.0.0" ) @deprecated
    Deprecated

    (Since version 3.0.0)

Parameter setters

  1. def setFeaturesCol(value: String): BisectingKMeansModel.this.type

    Annotations
    @Since( "2.1.0" )
  2. def setPredictionCol(value: String): BisectingKMeansModel.this.type

    Annotations
    @Since( "2.1.0" )

Parameter getters

  1. final def getDistanceMeasure: String

    Definition Classes
    HasDistanceMeasure
  2. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  3. def getK: Int

    Definition Classes
    BisectingKMeansParams
    Annotations
    @Since( "2.0.0" )
  4. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  5. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  6. final def getSeed: Long

    Definition Classes
    HasSeed
  7. final def getWeightCol: String

    Definition Classes
    HasWeightCol

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val minDivisibleClusterSize: DoubleParam

    The minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).

    The minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).

    Definition Classes
    BisectingKMeansParams
    Annotations
    @Since( "2.0.0" )

(expert-only) Parameter getters

  1. def getMinDivisibleClusterSize: Double

    Definition Classes
    BisectingKMeansParams
    Annotations
    @Since( "2.0.0" )