object KMeans extends Serializable
Top-level methods for calling K-means clustering.
- Annotations
- @Since( "0.8.0" )
- Source
- KMeans.scala
- Alphabetic
- By Inheritance
- KMeans
- Serializable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
val
K_MEANS_PARALLEL: String
- Annotations
- @Since( "0.8.0" )
-
val
RANDOM: String
- Annotations
- @Since( "0.8.0" )
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(data: RDD[Vector], k: Int, maxIterations: Int): KMeansModel
Trains a k-means model using specified parameters and the default values for unspecified.
Trains a k-means model using specified parameters and the default values for unspecified.
- Annotations
- @Since( "0.8.0" )
-
def
train(data: RDD[Vector], k: Int, maxIterations: Int, initializationMode: String): KMeansModel
Trains a k-means model using the given set of parameters.
Trains a k-means model using the given set of parameters.
- data
Training points as an
RDD
ofVector
types.- k
Number of clusters to create.
- maxIterations
Maximum number of iterations allowed.
- initializationMode
The initialization algorithm. This can either be "random" or "k-means||". (default: "k-means||")
- Annotations
- @Since( "2.1.0" )
-
def
train(data: RDD[Vector], k: Int, maxIterations: Int, initializationMode: String, seed: Long): KMeansModel
Trains a k-means model using the given set of parameters.
Trains a k-means model using the given set of parameters.
- data
Training points as an
RDD
ofVector
types.- k
Number of clusters to create.
- maxIterations
Maximum number of iterations allowed.
- initializationMode
The initialization algorithm. This can either be "random" or "k-means||". (default: "k-means||")
- seed
Random seed for cluster initialization. Default is to generate seed based on system time.
- Annotations
- @Since( "2.1.0" )
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()