class IndexedRowMatrix extends DistributedMatrix
Represents a row-oriented org.apache.spark.mllib.linalg.distributed.DistributedMatrix with indexed rows.
- Annotations
 - @Since("1.0.0")
 - Source
 - IndexedRowMatrix.scala
 
- Alphabetic
 - By Inheritance
 
- IndexedRowMatrix
 - DistributedMatrix
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - Protected
 
Instance Constructors
-    new IndexedRowMatrix(rows: RDD[IndexedRow])
Alternative constructor leaving matrix dimensions to be determined automatically.
Alternative constructor leaving matrix dimensions to be determined automatically.
- Annotations
 - @Since("1.0.0")
 
 -    new IndexedRowMatrix(rows: RDD[IndexedRow], nRows: Long, nCols: Int)
- rows
 indexed rows of this matrix
- nRows
 number of rows. A non-positive value means unknown, and then the number of rows will be determined by the max row index plus one.
- nCols
 number of columns. A non-positive value means unknown, and then the number of columns will be determined by the size of the first row.
- Annotations
 - @Since("1.0.0")
 
 
Value Members
-   final  def !=(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def ##: Int
- Definition Classes
 - AnyRef → Any
 
 -   final  def ==(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def asInstanceOf[T0]: T0
- Definition Classes
 - Any
 
 -    def clone(): AnyRef
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
 -    def columnSimilarities(): CoordinateMatrix
Compute all cosine similarities between columns of this matrix using the brute-force approach of computing normalized dot products.
Compute all cosine similarities between columns of this matrix using the brute-force approach of computing normalized dot products.
- returns
 An n x n sparse upper-triangular matrix of cosine similarities between columns of this matrix.
- Annotations
 - @Since("1.6.0")
 
 -    def computeGramianMatrix(): Matrix
Computes the Gramian matrix
A^T A.Computes the Gramian matrix
A^T A.- Annotations
 - @Since("1.0.0")
 - Note
 This cannot be computed on matrices with more than 65535 columns.
 -    def computeSVD(k: Int, computeU: Boolean = false, rCond: Double = 1e-9): SingularValueDecomposition[IndexedRowMatrix, Matrix]
Computes the singular value decomposition of this IndexedRowMatrix.
Computes the singular value decomposition of this IndexedRowMatrix. Denote this matrix by A (m x n), this will compute matrices U, S, V such that A = U * S * V'.
The cost and implementation of this method is identical to that in org.apache.spark.mllib.linalg.distributed.RowMatrix With the addition of indices.
At most k largest non-zero singular values and associated vectors are returned. If there are k such values, then the dimensions of the return will be:
U is an org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix of size m x k that satisfies U'U = eye(k), s is a Vector of size k, holding the singular values in descending order, and V is a local Matrix of size n x k that satisfies V'V = eye(k).
- k
 number of singular values to keep. We might return less than k if there are numerically zero singular values. See rCond.
- computeU
 whether to compute U
- rCond
 the reciprocal condition number. All singular values smaller than rCond * sigma(0) are treated as zero, where sigma(0) is the largest singular value.
- returns
 SingularValueDecomposition(U, s, V)
- Annotations
 - @Since("1.0.0")
 
 -   final  def eq(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -    def equals(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def getClass(): Class[_ <: AnyRef]
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def hashCode(): Int
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def isInstanceOf[T0]: Boolean
- Definition Classes
 - Any
 
 -    def multiply(B: Matrix): IndexedRowMatrix
Multiply this matrix by a local matrix on the right.
Multiply this matrix by a local matrix on the right.
- B
 a local matrix whose number of rows must match the number of columns of this matrix
- returns
 an IndexedRowMatrix representing the product, which preserves partitioning
- Annotations
 - @Since("1.0.0")
 
 -   final  def ne(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -   final  def notify(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def notifyAll(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def numCols(): Long
Gets or computes the number of columns.
Gets or computes the number of columns.
- Definition Classes
 - IndexedRowMatrix → DistributedMatrix
 - Annotations
 - @Since("1.0.0")
 
 -    def numRows(): Long
Gets or computes the number of rows.
Gets or computes the number of rows.
- Definition Classes
 - IndexedRowMatrix → DistributedMatrix
 - Annotations
 - @Since("1.0.0")
 
 -    val rows: RDD[IndexedRow]
- Annotations
 - @Since("1.0.0")
 
 -   final  def synchronized[T0](arg0: => T0): T0
- Definition Classes
 - AnyRef
 
 -    def toBlockMatrix(rowsPerBlock: Int, colsPerBlock: Int): BlockMatrix
Converts to BlockMatrix.
Converts to BlockMatrix. Blocks may be sparse or dense depending on the sparsity of the rows.
- rowsPerBlock
 The number of rows of each block. The blocks at the bottom edge may have a smaller value. Must be an integer value greater than 0.
- colsPerBlock
 The number of columns of each block. The blocks at the right edge may have a smaller value. Must be an integer value greater than 0.
- returns
 
- Annotations
 - @Since("1.3.0")
 
 -    def toBlockMatrix(): BlockMatrix
Converts to BlockMatrix.
Converts to BlockMatrix. Creates blocks with size 1024 x 1024.
- Annotations
 - @Since("1.3.0")
 
 -    def toCoordinateMatrix(): CoordinateMatrix
Converts this matrix to a org.apache.spark.mllib.linalg.distributed.CoordinateMatrix.
Converts this matrix to a org.apache.spark.mllib.linalg.distributed.CoordinateMatrix.
- Annotations
 - @Since("1.3.0")
 
 -    def toRowMatrix(): RowMatrix
Drops row indices and converts this matrix to a org.apache.spark.mllib.linalg.distributed.RowMatrix.
Drops row indices and converts this matrix to a org.apache.spark.mllib.linalg.distributed.RowMatrix.
- Annotations
 - @Since("1.0.0")
 
 -    def toString(): String
- Definition Classes
 - AnyRef → Any
 
 -   final  def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -   final  def wait(arg0: Long): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException]) @native()
 
 -   final  def wait(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 
Deprecated Value Members
-    def finalize(): Unit
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.Throwable]) @Deprecated
 - Deprecated
 (Since version 9)