Package org.apache.spark.graphx.impl
Class EdgeRDDImpl<ED,VD>
Object
org.apache.spark.rdd.RDD<Edge<ED>>
org.apache.spark.graphx.EdgeRDD<ED>
org.apache.spark.graphx.impl.EdgeRDDImpl<ED,VD>
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Method Summary
Modifier and TypeMethodDescriptioncache()
Persists the edge partitions usingtargetStorageLevel
, which defaults to MEMORY_ONLY.void
Mark this RDD for checkpointing.collect()
Return an array that contains all of the elements in this RDD.long
count()
The number of edges in the RDD.scala.Option<String>
Gets the name of the directory to which this RDD was checkpointed.Get the RDD's current storage level, or StorageLevel.NONE if none is set.<ED2,
ED3> EdgeRDDImpl<ED3, VD> innerJoin
(EdgeRDD<ED2> other, scala.Function4<Object, Object, ED, ED2, ED3> f, scala.reflect.ClassTag<ED2> evidence$4, scala.reflect.ClassTag<ED3> evidence$5) Inner joins this EdgeRDD with another EdgeRDD, assuming both are partitioned using the samePartitionStrategy
.boolean
Return whether this RDD is checkpointed and materialized, either reliably or locally.<ED2,
VD2> EdgeRDDImpl<ED2, VD2> mapEdgePartitions
(scala.Function2<Object, org.apache.spark.graphx.impl.EdgePartition<ED, VD>, org.apache.spark.graphx.impl.EdgePartition<ED2, VD2>> f, scala.reflect.ClassTag<ED2> evidence$6, scala.reflect.ClassTag<VD2> evidence$7) <ED2> EdgeRDDImpl<ED2,
VD> Map the values in an edge partitioning preserving the structure but changing the values.scala.Option<Partitioner>
IfpartitionsRDD
already has a partitioner, use it.persist
(StorageLevel newLevel) Persists the edge partitions at the specified storage level, ignoring any existing target storage level.reverse()
Reverse all the edges in this RDD.Assign a name to this RDDunpersist
(boolean blocking) Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.Methods inherited from class org.apache.spark.rdd.RDD
aggregate, barrier, cartesian, cleanShuffleDependencies, coalesce, collect, context, countApprox, countApproxDistinct, countApproxDistinct, countByValue, countByValueApprox, dependencies, distinct, distinct, doubleRDDToDoubleRDDFunctions, filter, first, flatMap, fold, foreach, foreachPartition, getNumPartitions, getResourceProfile, glom, groupBy, groupBy, groupBy, id, intersection, intersection, intersection, isEmpty, iterator, keyBy, localCheckpoint, map, mapPartitions, mapPartitionsWithEvaluator, mapPartitionsWithIndex, max, min, name, numericRDDToDoubleRDDFunctions, partitions, persist, pipe, pipe, pipe, preferredLocations, randomSplit, rddToAsyncRDDActions, rddToOrderedRDDFunctions, rddToPairRDDFunctions, rddToSequenceFileRDDFunctions, reduce, repartition, sample, saveAsObjectFile, saveAsTextFile, saveAsTextFile, sortBy, sparkContext, subtract, subtract, subtract, take, takeOrdered, takeSample, toDebugString, toJavaRDD, toLocalIterator, top, toString, treeAggregate, treeAggregate, treeReduce, union, withResources, zip, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitions, zipPartitionsWithEvaluator, zipWithIndex, zipWithUniqueId
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
-
Method Details
-
partitionsRDD
-
targetStorageLevel
-
setName
Description copied from class:RDD
Assign a name to this RDD -
partitioner
IfpartitionsRDD
already has a partitioner, use it. Otherwise assume that thePartitionID
s inpartitionsRDD
correspond to the actual partitions and create a new partitioner that allows co-partitioning withpartitionsRDD
.- Overrides:
partitioner
in classRDD<Edge<ED>>
- Returns:
- (undocumented)
-
collect
Description copied from class:RDD
Return an array that contains all of the elements in this RDD. -
persist
Persists the edge partitions at the specified storage level, ignoring any existing target storage level. -
unpersist
Description copied from class:RDD
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. -
cache
Persists the edge partitions usingtargetStorageLevel
, which defaults to MEMORY_ONLY. -
getStorageLevel
Description copied from class:RDD
Get the RDD's current storage level, or StorageLevel.NONE if none is set.- Overrides:
getStorageLevel
in classRDD<Edge<ED>>
-
checkpoint
public void checkpoint()Description copied from class:RDD
Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint directory set withSparkContext#setCheckpointDir
and all references to its parent RDDs will be removed. This function must be called before any job has been executed on this RDD. It is strongly recommended that this RDD is persisted in memory, otherwise saving it on a file will require recomputation.The data is only checkpointed when
doCheckpoint()
is called, and this only happens at the end of the first action execution on this RDD. The final data that is checkpointed after the first action may be different from the data that was used during the action, due to non-determinism of the underlying operation and retries. If the purpose of the checkpoint is to achieve saving a deterministic snapshot of the data, an eager action may need to be called first on the RDD to trigger the checkpoint.- Overrides:
checkpoint
in classRDD<Edge<ED>>
-
isCheckpointed
public boolean isCheckpointed()Description copied from class:RDD
Return whether this RDD is checkpointed and materialized, either reliably or locally.- Overrides:
isCheckpointed
in classRDD<Edge<ED>>
- Returns:
- (undocumented)
-
getCheckpointFile
Description copied from class:RDD
Gets the name of the directory to which this RDD was checkpointed. This is not defined if the RDD is checkpointed locally.- Overrides:
getCheckpointFile
in classRDD<Edge<ED>>
- Returns:
- (undocumented)
-
count
public long count()The number of edges in the RDD. -
mapValues
public <ED2> EdgeRDDImpl<ED2,VD> mapValues(scala.Function1<Edge<ED>, ED2> f, scala.reflect.ClassTag<ED2> evidence$3) Description copied from class:EdgeRDD
Map the values in an edge partitioning preserving the structure but changing the values. -
reverse
Description copied from class:EdgeRDD
Reverse all the edges in this RDD. -
filter
public EdgeRDDImpl<ED,VD> filter(scala.Function1<EdgeTriplet<VD, ED>, Object> epred, scala.Function2<Object, VD, Object> vpred) -
innerJoin
public <ED2,ED3> EdgeRDDImpl<ED3,VD> innerJoin(EdgeRDD<ED2> other, scala.Function4<Object, Object, ED, ED2, ED3> f, scala.reflect.ClassTag<ED2> evidence$4, scala.reflect.ClassTag<ED3> evidence$5) Description copied from class:EdgeRDD
Inner joins this EdgeRDD with another EdgeRDD, assuming both are partitioned using the samePartitionStrategy
.- Specified by:
innerJoin
in classEdgeRDD<ED>
- Parameters:
other
- the EdgeRDD to join withf
- the join function applied to corresponding values ofthis
andother
evidence$4
- (undocumented)evidence$5
- (undocumented)- Returns:
- a new EdgeRDD containing only edges that appear in both
this
andother
, with values supplied byf
-
mapEdgePartitions
public <ED2,VD2> EdgeRDDImpl<ED2,VD2> mapEdgePartitions(scala.Function2<Object, org.apache.spark.graphx.impl.EdgePartition<ED, VD>, org.apache.spark.graphx.impl.EdgePartition<ED2, VD2>> f, scala.reflect.ClassTag<ED2> evidence$6, scala.reflect.ClassTag<VD2> evidence$7)
-