Class NaiveBayesModel
Object
org.apache.spark.mllib.classification.NaiveBayesModel
- All Implemented Interfaces:
 Serializable,ClassificationModel,Saveable
Model for Naive Bayes Classifiers.
 
param: labels list of labels param: pi log of class priors, whose dimension is C, number of labels param: theta log of class conditional probabilities, whose dimension is C-by-D, where D is number of features param: modelType The type of NB model to fit can be "multinomial" or "bernoulli"
- See Also:
 
- 
Nested Class Summary
Nested ClassesModifier and TypeClassDescriptionstatic classstatic class - 
Method Summary
Modifier and TypeMethodDescriptiondouble[]labels()static NaiveBayesModelload(SparkContext sc, String path) double[]pi()doublePredict values for a single data point using the model trained.Predict values for the given data set using the model trained.predictProbabilities(Vector testData) Predict posterior class probabilities for a single data point using the model trained.predictProbabilities(RDD<Vector> testData) Predict values for the given data set using the model trained.voidsave(SparkContext sc, String path) Save this model to the given path.double[][]theta()Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.mllib.classification.ClassificationModel
predict 
- 
Method Details
- 
load
 - 
labels
public double[] labels() - 
pi
public double[] pi() - 
theta
public double[][] theta() - 
modelType
 - 
predict
Description copied from interface:ClassificationModelPredict values for the given data set using the model trained.- Specified by:
 predictin interfaceClassificationModel- Parameters:
 testData- RDD representing data points to be predicted- Returns:
 - an RDD[Double] where each entry contains the corresponding prediction
 
 - 
predict
Description copied from interface:ClassificationModelPredict values for a single data point using the model trained.- Specified by:
 predictin interfaceClassificationModel- Parameters:
 testData- array representing a single data point- Returns:
 - predicted category from the trained model
 
 - 
predictProbabilities
Predict values for the given data set using the model trained.- Parameters:
 testData- RDD representing data points to be predicted- Returns:
 - an RDD[Vector] where each entry contains the predicted posterior class probabilities, in the same order as class labels
 
 - 
predictProbabilities
Predict posterior class probabilities for a single data point using the model trained.- Parameters:
 testData- array representing a single data point- Returns:
 - predicted posterior class probabilities from the trained model, in the same order as class labels
 
 - 
save
Description copied from interface:SaveableSave this model to the given path.This saves: - human-readable (JSON) model metadata to path/metadata/ - Parquet formatted data to path/data/
The model may be loaded using
Loader.load. 
 -