Class BisectingKMeans
Object
org.apache.spark.mllib.clustering.BisectingKMeans
- All Implemented Interfaces:
org.apache.spark.internal.Logging
A bisecting k-means algorithm based on the paper "A comparison of document clustering techniques"
by Steinbach, Karypis, and Kumar, with modification to fit Spark.
The algorithm starts from a single cluster that contains all points.
Iteratively it finds divisible clusters on the bottom level and bisects each of them using
k-means, until there are
k
leaf clusters in total or no leaf clusters are divisible.
The bisecting steps of clusters on the same level are grouped together to increase parallelism.
If bisecting all divisible clusters on the bottom level would result more than k
leaf clusters,
larger clusters get higher priority.
param: k the desired number of leaf clusters (default: 4). The actual number could be smaller if there are no divisible leaf clusters. param: maxIterations the max number of k-means iterations to split clusters (default: 20) param: minDivisibleClusterSize the minimum number of points (if greater than or equal 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1) param: seed a random seed (default: hash value of the class name)
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionThe distance suite used by the algorithm.int
getK()
Gets the desired number of leaf clusters.int
Gets the max number of k-means iterations to split clusters.double
Gets the minimum number of points (if greater than or equal to1.0
) or the minimum proportion of points (if less than1.0
) of a divisible cluster.long
getSeed()
Gets the random seed.Java-friendly version ofrun()
.Runs the bisecting k-means algorithm.setDistanceMeasure
(String distanceMeasure) Set the distance suite used by the algorithm.setK
(int k) Sets the desired number of leaf clusters (default: 4).setMaxIterations
(int maxIterations) Sets the max number of k-means iterations to split clusters (default: 20).setMinDivisibleClusterSize
(double minDivisibleClusterSize) Sets the minimum number of points (if greater than or equal to1.0
) or the minimum proportion of points (if less than1.0
) of a divisible cluster (default: 1).setSeed
(long seed) Sets the random seed (default: hash value of the class name).Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
-
Constructor Details
-
BisectingKMeans
public BisectingKMeans()Constructs with the default configuration
-
-
Method Details
-
setK
Sets the desired number of leaf clusters (default: 4). The actual number could be smaller if there are no divisible leaf clusters.- Parameters:
k
- (undocumented)- Returns:
- (undocumented)
-
getK
public int getK()Gets the desired number of leaf clusters.- Returns:
- (undocumented)
-
setMaxIterations
Sets the max number of k-means iterations to split clusters (default: 20).- Parameters:
maxIterations
- (undocumented)- Returns:
- (undocumented)
-
getMaxIterations
public int getMaxIterations()Gets the max number of k-means iterations to split clusters.- Returns:
- (undocumented)
-
setMinDivisibleClusterSize
Sets the minimum number of points (if greater than or equal to1.0
) or the minimum proportion of points (if less than1.0
) of a divisible cluster (default: 1).- Parameters:
minDivisibleClusterSize
- (undocumented)- Returns:
- (undocumented)
-
getMinDivisibleClusterSize
public double getMinDivisibleClusterSize()Gets the minimum number of points (if greater than or equal to1.0
) or the minimum proportion of points (if less than1.0
) of a divisible cluster.- Returns:
- (undocumented)
-
setSeed
Sets the random seed (default: hash value of the class name).- Parameters:
seed
- (undocumented)- Returns:
- (undocumented)
-
getSeed
public long getSeed()Gets the random seed.- Returns:
- (undocumented)
-
getDistanceMeasure
The distance suite used by the algorithm.- Returns:
- (undocumented)
-
setDistanceMeasure
Set the distance suite used by the algorithm.- Parameters:
distanceMeasure
- (undocumented)- Returns:
- (undocumented)
-
run
Runs the bisecting k-means algorithm.- Parameters:
input
- RDD of vectors- Returns:
- model for the bisecting kmeans
-
run
Java-friendly version ofrun()
.- Parameters:
data
- (undocumented)- Returns:
- (undocumented)
-