Class LBFGS
Object
org.apache.spark.mllib.optimization.LBFGS
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,Optimizer
Class used to solve an optimization problem using Limited-memory BFGS.
Reference:
Wikipedia on Limited-memory BFGS
param: gradient Gradient function to be used.
param: updater Updater to be used to update weights after every iteration.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionstatic org.apache.spark.internal.Logging.LogStringContext
LogStringContext
(scala.StringContext sc) Solve the provided convex optimization problem.scala.Tuple2<Vector,
double[]> optimizeWithLossReturned
(RDD<scala.Tuple2<Object, Vector>> data, Vector initialWeights) static org.slf4j.Logger
static void
org$apache$spark$internal$Logging$$log__$eq
(org.slf4j.Logger x$1) static scala.Tuple2<Vector,
double[]> runLBFGS
(RDD<scala.Tuple2<Object, Vector>> data, Gradient gradient, Updater updater, int numCorrections, double convergenceTol, int maxNumIterations, double regParam, Vector initialWeights) Run Limited-memory BFGS (L-BFGS) in parallel.setConvergenceTol
(double tolerance) Set the convergence tolerance of iterations for L-BFGS.setGradient
(Gradient gradient) Set the gradient function (of the loss function of one single data example) to be used for L-BFGS.setNumCorrections
(int corrections) Set the number of corrections used in the LBFGS update.setNumIterations
(int iters) Set the maximal number of iterations for L-BFGS.setRegParam
(double regParam) Set the regularization parameter.setUpdater
(Updater updater) Set the updater function to actually perform a gradient step in a given direction.Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
-
Constructor Details
-
LBFGS
-
-
Method Details
-
runLBFGS
public static scala.Tuple2<Vector,double[]> runLBFGS(RDD<scala.Tuple2<Object, Vector>> data, Gradient gradient, Updater updater, int numCorrections, double convergenceTol, int maxNumIterations, double regParam, Vector initialWeights) Run Limited-memory BFGS (L-BFGS) in parallel. Averaging the subgradients over different partitions is performed using one standard spark map-reduce in each iteration.- Parameters:
data
- - Input data for L-BFGS. RDD of the set of data examples, each of the form (label, [feature values]).gradient
- - Gradient object (used to compute the gradient of the loss function of one single data example)updater
- - Updater function to actually perform a gradient step in a given direction.numCorrections
- - The number of corrections used in the L-BFGS update.convergenceTol
- - The convergence tolerance of iterations for L-BFGS which is must be nonnegative. Lower values are less tolerant and therefore generally cause more iterations to be run.maxNumIterations
- - Maximal number of iterations that L-BFGS can be run.regParam
- - Regularization parameterinitialWeights
- (undocumented)- Returns:
- A tuple containing two elements. The first element is a column matrix containing weights for every feature, and the second element is an array containing the loss computed for every iteration.
-
org$apache$spark$internal$Logging$$log_
public static org.slf4j.Logger org$apache$spark$internal$Logging$$log_() -
org$apache$spark$internal$Logging$$log__$eq
public static void org$apache$spark$internal$Logging$$log__$eq(org.slf4j.Logger x$1) -
LogStringContext
public static org.apache.spark.internal.Logging.LogStringContext LogStringContext(scala.StringContext sc) -
setNumCorrections
Set the number of corrections used in the LBFGS update. Default 10. Values of numCorrections less than 3 are not recommended; large values of numCorrections will result in excessive computing time. numCorrections must be positive, and values from 4 to 9 are generally recommended.- Parameters:
corrections
- (undocumented)- Returns:
- (undocumented)
-
setConvergenceTol
Set the convergence tolerance of iterations for L-BFGS. Default 1E-6. Smaller value will lead to higher accuracy with the cost of more iterations. This value must be nonnegative. Lower convergence values are less tolerant and therefore generally cause more iterations to be run.- Parameters:
tolerance
- (undocumented)- Returns:
- (undocumented)
-
setNumIterations
Set the maximal number of iterations for L-BFGS. Default 100.- Parameters:
iters
- (undocumented)- Returns:
- (undocumented)
-
setRegParam
Set the regularization parameter. Default 0.0.- Parameters:
regParam
- (undocumented)- Returns:
- (undocumented)
-
setGradient
Set the gradient function (of the loss function of one single data example) to be used for L-BFGS.- Parameters:
gradient
- (undocumented)- Returns:
- (undocumented)
-
setUpdater
Set the updater function to actually perform a gradient step in a given direction. The updater is responsible to perform the update from the regularization term as well, and therefore determines what kind or regularization is used, if any.- Parameters:
updater
- (undocumented)- Returns:
- (undocumented)
-
optimize
Description copied from interface:Optimizer
Solve the provided convex optimization problem. -
optimizeWithLossReturned
-