class RandomForestClassifier extends ProbabilisticClassifier[Vector, RandomForestClassifier, RandomForestClassificationModel] with RandomForestClassifierParams with DefaultParamsWritable
Random Forest learning algorithm for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features.
- Annotations
- @Since("1.4.0")
- Source
- RandomForestClassifier.scala
- Grouped
- Alphabetic
- By Inheritance
- RandomForestClassifier
- DefaultParamsWritable
- MLWritable
- RandomForestClassifierParams
- TreeClassifierParams
- TreeEnsembleClassifierParams
- RandomForestParams
- TreeEnsembleParams
- DecisionTreeParams
- HasWeightCol
- HasSeed
- HasCheckpointInterval
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- implicit class LogStringContext extends AnyRef
- Definition Classes
- Logging
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- final val bootstrap: BooleanParam
Whether bootstrap samples are used when building trees.
Whether bootstrap samples are used when building trees.
- Definition Classes
- RandomForestParams
- Annotations
- @Since("3.0.0")
- final val cacheNodeIds: BooleanParam
If false, the algorithm will pass trees to executors to match instances with nodes.
If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)
- Definition Classes
- DecisionTreeParams
- final val checkpointInterval: IntParam
Param for set checkpoint interval (>= 1) or disable checkpoint (-1).
Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.
- Definition Classes
- HasCheckpointInterval
- final def clear(param: Param[_]): RandomForestClassifier.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- def copy(extra: ParamMap): RandomForestClassifier
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- RandomForestClassifier → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since("1.4.1")
- def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
- def explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
- final def extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
- final val featureSubsetStrategy: Param[String]
The number of features to consider for splits at each tree node.
The number of features to consider for splits at each tree node. Supported options:
- "auto": Choose automatically for task: If numTrees == 1, set to "all." If numTrees greater than 1 (forest), set to "sqrt" for classification and to "onethird" for regression.
- "all": use all features
- "onethird": use 1/3 of the features
- "sqrt": use sqrt(number of features)
- "log2": use log2(number of features)
- "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features. (default = "auto")
These various settings are based on the following references:
- log2: tested in Breiman (2001)
- sqrt: recommended by Breiman manual for random forests
- The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
- Definition Classes
- TreeEnsembleParams
- See also
- final val featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
- def fit(dataset: Dataset[_]): RandomForestClassificationModel
Fits a model to the input data.
- def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[RandomForestClassificationModel]
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
- dataset
input dataset
- paramMaps
An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted models, matching the input parameter maps
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], paramMap: ParamMap): RandomForestClassificationModel
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
- dataset
input dataset
- paramMap
Parameter map. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
- def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): RandomForestClassificationModel
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
- dataset
input dataset
- firstParamPair
the first param pair, overrides embedded params
- otherParamPairs
other param pairs. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since("2.0.0") @varargs()
- final def get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
- final def getBootstrap: Boolean
- Definition Classes
- RandomForestParams
- Annotations
- @Since("3.0.0")
- final def getCacheNodeIds: Boolean
- Definition Classes
- DecisionTreeParams
- final def getCheckpointInterval: Int
- Definition Classes
- HasCheckpointInterval
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
- final def getFeatureSubsetStrategy: String
- Definition Classes
- TreeEnsembleParams
- final def getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
- final def getImpurity: String
- Definition Classes
- TreeClassifierParams
- final def getLabelCol: String
- Definition Classes
- HasLabelCol
- final def getLeafCol: String
- Definition Classes
- DecisionTreeParams
- Annotations
- @Since("3.0.0")
- final def getMaxBins: Int
- Definition Classes
- DecisionTreeParams
- final def getMaxDepth: Int
- Definition Classes
- DecisionTreeParams
- final def getMaxMemoryInMB: Int
- Definition Classes
- DecisionTreeParams
- final def getMinInfoGain: Double
- Definition Classes
- DecisionTreeParams
- final def getMinInstancesPerNode: Int
- Definition Classes
- DecisionTreeParams
- final def getMinWeightFractionPerNode: Double
- Definition Classes
- DecisionTreeParams
- def getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int
Get the number of classes.
Get the number of classes. This looks in column metadata first, and if that is missing, then this assumes classes are indexed 0,1,...,numClasses-1 and computes numClasses by finding the maximum label value.
Label validation (ensuring all labels are integers >= 0) needs to be handled elsewhere, such as in
extractLabeledPoints()
.- dataset
Dataset which contains a column labelCol
- maxNumClasses
Maximum number of classes allowed when inferred from data. If numClasses is specified in the metadata, then maxNumClasses is ignored.
- returns
number of classes
- Attributes
- protected
- Definition Classes
- Classifier
- Exceptions thrown
IllegalArgumentException
if metadata does not specify numClasses, and the actual numClasses exceeds maxNumClasses
- final def getNumTrees: Int
- Definition Classes
- RandomForestParams
- final def getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
- def getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
- final def getPredictionCol: String
- Definition Classes
- HasPredictionCol
- final def getProbabilityCol: String
- Definition Classes
- HasProbabilityCol
- final def getRawPredictionCol: String
- Definition Classes
- HasRawPredictionCol
- final def getSeed: Long
- Definition Classes
- HasSeed
- final def getSubsamplingRate: Double
- Definition Classes
- TreeEnsembleParams
- def getThresholds: Array[Double]
- Definition Classes
- HasThresholds
- final def getWeightCol: String
- Definition Classes
- HasWeightCol
- final def hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final val impurity: Param[String]
Criterion used for information gain calculation (case-insensitive).
Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeClassifier and RandomForestClassifier, Supported: "entropy" and "gini". (default = gini)
- Definition Classes
- TreeClassifierParams
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- final val labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
- final val leafCol: Param[String]
Leaf indices column name.
Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "")
- Definition Classes
- DecisionTreeParams
- Annotations
- @Since("3.0.0")
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final val maxBins: IntParam
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.
Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32)
- Definition Classes
- DecisionTreeParams
- final val maxDepth: IntParam
Maximum depth of the tree (nonnegative).
Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)
- Definition Classes
- DecisionTreeParams
- final val maxMemoryInMB: IntParam
Maximum memory in MB allocated to histogram aggregation.
Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)
- Definition Classes
- DecisionTreeParams
- final val minInfoGain: DoubleParam
Minimum information gain for a split to be considered at a tree node.
Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0)
- Definition Classes
- DecisionTreeParams
- final val minInstancesPerNode: IntParam
Minimum number of instances each child must have after split.
Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1)
- Definition Classes
- DecisionTreeParams
- final val minWeightFractionPerNode: DoubleParam
Minimum fraction of the weighted sample count that each child must have after split.
Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0)
- Definition Classes
- DecisionTreeParams
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final val numTrees: IntParam
Number of trees to train (at least 1).
Number of trees to train (at least 1). If 1, then no bootstrapping is used. If greater than 1, then bootstrapping is done. TODO: Change to always do bootstrapping (simpler). SPARK-7130 (default = 20)
Note: The reason that we cannot add this to both GBT and RF (i.e. in TreeEnsembleParams) is the param
maxIter
controls how many trees a GBT has. The semantics in the algorithms are a bit different.- Definition Classes
- RandomForestParams
- lazy val params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
- final val predictionCol: Param[String]
Param for prediction column name.
Param for prediction column name.
- Definition Classes
- HasPredictionCol
- final val probabilityCol: Param[String]
Param for Column name for predicted class conditional probabilities.
Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities.
- Definition Classes
- HasProbabilityCol
- final val rawPredictionCol: Param[String]
Param for raw prediction (a.k.a.
Param for raw prediction (a.k.a. confidence) column name.
- Definition Classes
- HasRawPredictionCol
- def save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
- final val seed: LongParam
Param for random seed.
Param for random seed.
- Definition Classes
- HasSeed
- final def set(paramPair: ParamPair[_]): RandomForestClassifier.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): RandomForestClassifier.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): RandomForestClassifier.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
- def setBootstrap(value: Boolean): RandomForestClassifier.this.type
- Annotations
- @Since("3.0.0")
- def setCacheNodeIds(value: Boolean): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setCheckpointInterval(value: Int): RandomForestClassifier.this.type
Specifies how often to checkpoint the cached node IDs.
Specifies how often to checkpoint the cached node IDs. E.g. 10 means that the cache will get checkpointed every 10 iterations. This is only used if cacheNodeIds is true and if the checkpoint directory is set in org.apache.spark.SparkContext. Must be at least 1. (default = 10)
- Annotations
- @Since("1.4.0")
- final def setDefault(paramPairs: ParamPair[_]*): RandomForestClassifier.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): RandomForestClassifier.this.type
Sets a default value for a param.
- def setFeatureSubsetStrategy(value: String): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setFeaturesCol(value: String): RandomForestClassifier
- Definition Classes
- Predictor
- def setImpurity(value: String): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setLabelCol(value: String): RandomForestClassifier
- Definition Classes
- Predictor
- final def setLeafCol(value: String): RandomForestClassifier.this.type
- Definition Classes
- DecisionTreeParams
- Annotations
- @Since("3.0.0")
- def setMaxBins(value: Int): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setMaxDepth(value: Int): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setMaxMemoryInMB(value: Int): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setMinInfoGain(value: Double): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setMinInstancesPerNode(value: Int): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setMinWeightFractionPerNode(value: Double): RandomForestClassifier.this.type
- Annotations
- @Since("3.0.0")
- def setNumTrees(value: Int): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setPredictionCol(value: String): RandomForestClassifier
- Definition Classes
- Predictor
- def setProbabilityCol(value: String): RandomForestClassifier
- Definition Classes
- ProbabilisticClassifier
- def setRawPredictionCol(value: String): RandomForestClassifier
- Definition Classes
- Classifier
- def setSeed(value: Long): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setSubsamplingRate(value: Double): RandomForestClassifier.this.type
- Annotations
- @Since("1.4.0")
- def setThresholds(value: Array[Double]): RandomForestClassifier
- Definition Classes
- ProbabilisticClassifier
- def setWeightCol(value: String): RandomForestClassifier.this.type
Sets the value of param weightCol.
Sets the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. By default the weightCol is not set, so all instances have weight 1.0.
- Annotations
- @Since("3.0.0")
- final val subsamplingRate: DoubleParam
Fraction of the training data used for learning each decision tree, in range (0, 1].
Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0)
- Definition Classes
- TreeEnsembleParams
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- val thresholds: DoubleArrayParam
Param for Thresholds in multi-class classification to adjust the probability of predicting each class.
Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold.
- Definition Classes
- HasThresholds
- def toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
- def train(dataset: Dataset[_]): RandomForestClassificationModel
Train a model using the given dataset and parameters.
Train a model using the given dataset and parameters. Developers can implement this instead of
fit()
to avoid dealing with schema validation and copying parameters into the model.- dataset
Training dataset
- returns
Fitted model
- Attributes
- protected
- Definition Classes
- RandomForestClassifier → Predictor
- def transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- Predictor → PipelineStage
- def transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- RandomForestClassifier → Identifiable
- Annotations
- @Since("1.4.0")
- def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType
Validates and transforms the input schema with the provided param map.
Validates and transforms the input schema with the provided param map.
- schema
input schema
- fitting
whether this is in fitting
- featuresDataType
SQL DataType for FeaturesType. E.g.,
VectorUDT
for vector features.- returns
output schema
- Attributes
- protected
- Definition Classes
- TreeEnsembleClassifierParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final val weightCol: Param[String]
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
- HasWeightCol
- def withLogContext(context: HashMap[String, String])(body: => Unit): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from RandomForestClassifierParams
Inherited from TreeClassifierParams
Inherited from TreeEnsembleClassifierParams
Inherited from RandomForestParams
Inherited from TreeEnsembleParams
Inherited from DecisionTreeParams
Inherited from HasWeightCol
Inherited from HasSeed
Inherited from HasCheckpointInterval
Inherited from ProbabilisticClassifier[Vector, RandomForestClassifier, RandomForestClassificationModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from Classifier[Vector, RandomForestClassifier, RandomForestClassificationModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from Predictor[Vector, RandomForestClassifier, RandomForestClassificationModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[RandomForestClassificationModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.