class CountVectorizerModel extends Model[CountVectorizerModel] with CountVectorizerParams with MLWritable
Converts a text document to a sparse vector of token counts.
- Annotations
- @Since("1.5.0")
- Source
- CountVectorizer.scala
- Grouped
- Alphabetic
- By Inheritance
- CountVectorizerModel
- MLWritable
- CountVectorizerParams
- HasOutputCol
- HasInputCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
- implicit class LogStringContext extends AnyRef
- Definition Classes
- Logging
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def $[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- val binary: BooleanParam
Binary toggle to control the output vector values.
Binary toggle to control the output vector values. If True, all nonzero counts (after minTF filter applied) are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts. Default: false
- Definition Classes
- CountVectorizerParams
- final def clear(param: Param[_]): CountVectorizerModel.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- def copy(extra: ParamMap): CountVectorizerModel
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- CountVectorizerModel → Model → Transformer → PipelineStage → Params
- Annotations
- @Since("1.5.0")
- def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
- final def defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
- def explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
- final def extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
- final def get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
- def getBinary: Boolean
- Definition Classes
- CountVectorizerParams
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- final def getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
- final def getInputCol: String
- Definition Classes
- HasInputCol
- def getMaxDF: Double
- Definition Classes
- CountVectorizerParams
- def getMinDF: Double
- Definition Classes
- CountVectorizerParams
- def getMinTF: Double
- Definition Classes
- CountVectorizerParams
- final def getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
- final def getOutputCol: String
- Definition Classes
- HasOutputCol
- def getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
- def getVocabSize: Int
- Definition Classes
- CountVectorizerParams
- final def hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
- def hasParent: Boolean
Indicates whether this Model has a corresponding parent.
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final val inputCol: Param[String]
Param for input column name.
Param for input column name.
- Definition Classes
- HasInputCol
- final def isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- final def isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- val maxDF: DoubleParam
Specifies the maximum number of different documents a term could appear in to be included in the vocabulary.
Specifies the maximum number of different documents a term could appear in to be included in the vocabulary. A term that appears more than the threshold will be ignored. If this is an integer greater than or equal to 1, this specifies the maximum number of documents the term could appear in; if this is a double in [0,1), then this specifies the maximum fraction of documents the term could appear in.
Default: (263) - 1
- Definition Classes
- CountVectorizerParams
- val minDF: DoubleParam
Specifies the minimum number of different documents a term must appear in to be included in the vocabulary.
Specifies the minimum number of different documents a term must appear in to be included in the vocabulary. If this is an integer greater than or equal to 1, this specifies the number of documents the term must appear in; if this is a double in [0,1), then this specifies the fraction of documents.
Default: 1.0
- Definition Classes
- CountVectorizerParams
- val minTF: DoubleParam
Filter to ignore rare words in a document.
Filter to ignore rare words in a document. For each document, terms with frequency/count less than the given threshold are ignored. If this is an integer greater than or equal to 1, then this specifies a count (of times the term must appear in the document); if this is a double in [0,1), then this specifies a fraction (out of the document's token count).
Note that the parameter is only used in transform of CountVectorizerModel and does not affect fitting.
Default: 1.0
- Definition Classes
- CountVectorizerParams
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final val outputCol: Param[String]
Param for output column name.
Param for output column name.
- Definition Classes
- HasOutputCol
- lazy val params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
- var parent: Estimator[CountVectorizerModel]
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
- Model
- Note
For ensembles' component Models, this value can be null.
- def save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
- final def set(paramPair: ParamPair[_]): CountVectorizerModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
- final def set(param: String, value: Any): CountVectorizerModel.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
- final def set[T](param: Param[T], value: T): CountVectorizerModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
- def setBinary(value: Boolean): CountVectorizerModel.this.type
- Annotations
- @Since("2.0.0")
- final def setDefault(paramPairs: ParamPair[_]*): CountVectorizerModel.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
- final def setDefault[T](param: Param[T], value: T): CountVectorizerModel.this.type
Sets a default value for a param.
- def setInputCol(value: String): CountVectorizerModel.this.type
- Annotations
- @Since("1.5.0")
- def setMinTF(value: Double): CountVectorizerModel.this.type
- Annotations
- @Since("1.5.0")
- def setOutputCol(value: String): CountVectorizerModel.this.type
- Annotations
- @Since("1.5.0")
- def setParent(parent: Estimator[CountVectorizerModel]): CountVectorizerModel
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
- Model
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- CountVectorizerModel → Identifiable → AnyRef → Any
- Annotations
- @Since("3.0.0")
- def transform(dataset: Dataset[_]): DataFrame
Transforms the input dataset.
Transforms the input dataset.
- Definition Classes
- CountVectorizerModel → Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
input dataset
- paramMap
additional parameters, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
input dataset
- firstParamPair
the first param pair, overwrite embedded params
- otherParamPairs
other param pairs, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0") @varargs()
- def transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- CountVectorizerModel → PipelineStage
- Annotations
- @Since("1.5.0")
- def transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
- val uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- CountVectorizerModel → Identifiable
- Annotations
- @Since("1.5.0")
- def validateAndTransformSchema(schema: StructType): StructType
Validates and transforms the input schema.
Validates and transforms the input schema.
- Attributes
- protected
- Definition Classes
- CountVectorizerParams
- val vocabSize: IntParam
Max size of the vocabulary.
Max size of the vocabulary. CountVectorizer will build a vocabulary that only considers the top vocabSize terms ordered by term frequency across the corpus.
Default: 218
- Definition Classes
- CountVectorizerParams
- val vocabulary: Array[String]
- Annotations
- @Since("1.5.0")
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def withLogContext(context: HashMap[String, String])(body: => Unit): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- CountVectorizerModel → MLWritable
- Annotations
- @Since("1.6.0")
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)
Inherited from MLWritable
Inherited from CountVectorizerParams
Inherited from HasOutputCol
Inherited from HasInputCol
Inherited from Model[CountVectorizerModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.