class SparkSession extends sql.api.SparkSession[Dataset] with Logging
The entry point to programming Spark with the Dataset and DataFrame API.
In environments that this has been created upfront (e.g. REPL, notebooks), use the builder to get an existing session:
SparkSession.builder().getOrCreate()
The builder can also be used to create a new session:
SparkSession.builder .master("local") .appName("Word Count") .config("spark.some.config.option", "some-value") .getOrCreate()
- Self Type
- SparkSession
- Annotations
- @Stable()
- Source
- SparkSession.scala
- Alphabetic
- By Inheritance
- SparkSession
- Logging
- SparkSession
- Closeable
- AutoCloseable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
- implicit class LogStringContext extends AnyRef
- Definition Classes
- Logging
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def addArtifact(source: String, target: String): Unit
Add a single artifact to the session while preserving the directory structure specified by
target
under the session's working directory of that particular file extension.Add a single artifact to the session while preserving the directory structure specified by
target
under the session's working directory of that particular file extension.Supported target file extensions are .jar and .class.
Example
addArtifact("/Users/dummyUser/files/foo/bar.class", "foo/bar.class") addArtifact("/Users/dummyUser/files/flat.class", "flat.class") // Directory structure of the session's working directory for class files would look like: // ${WORKING_DIR_FOR_CLASS_FILES}/flat.class // ${WORKING_DIR_FOR_CLASS_FILES}/foo/bar.class
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental()
- def addArtifact(bytes: Array[Byte], target: String): Unit
Add a single in-memory artifact to the session while preserving the directory structure specified by
target
under the session's working directory of that particular file extension.Add a single in-memory artifact to the session while preserving the directory structure specified by
target
under the session's working directory of that particular file extension.Supported target file extensions are .jar and .class.
Example
addArtifact(bytesBar, "foo/bar.class") addArtifact(bytesFlat, "flat.class") // Directory structure of the session's working directory for class files would look like: // ${WORKING_DIR_FOR_CLASS_FILES}/flat.class // ${WORKING_DIR_FOR_CLASS_FILES}/foo/bar.class
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental()
- def addArtifact(uri: URI): Unit
Add a single artifact to the current session.
Add a single artifact to the current session.
Currently it supports local files with extensions .jar and .class and Apache Ivy URIs.
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental()
- def addArtifact(path: String): Unit
Add a single artifact to the current session.
Add a single artifact to the current session.
Currently only local files with extensions .jar and .class are supported.
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental()
- def addArtifacts(uri: URI*): Unit
Add one or more artifacts to the session.
Add one or more artifacts to the session.
Currently it supports local files with extensions .jar and .class and Apache Ivy URIs
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental() @varargs()
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def baseRelationToDataFrame(baseRelation: BaseRelation): DataFrame
Convert a
BaseRelation
created for external data sources into aDataFrame
.Convert a
BaseRelation
created for external data sources into aDataFrame
.- Since
2.0.0
- lazy val catalog: Catalog
Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc.
Interface through which the user may create, drop, alter or query underlying databases, tables, functions etc.
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @transient()
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
- def close(): Unit
Stop the underlying
SparkContext
.Stop the underlying
SparkContext
.- Definition Classes
- SparkSession → Closeable → AutoCloseable
- Since
2.1.0
- lazy val conf: RuntimeConfig
Runtime configuration interface for Spark.
Runtime configuration interface for Spark.
This is the interface through which the user can get and set all Spark and Hadoop configurations that are relevant to Spark SQL. When getting the value of a config, this defaults to the value set in the underlying
SparkContext
, if any.- Annotations
- @transient()
- Since
2.0.0
- def createDataFrame(data: List[_], beanClass: Class[_]): DataFrame
Applies a schema to a List of Java Beans.
Applies a schema to a List of Java Beans.
WARNING: Since there is no guaranteed ordering for fields in a Java Bean, SELECT * queries will return the columns in an undefined order.
- Definition Classes
- SparkSession → SparkSession
- def createDataFrame(rdd: JavaRDD[_], beanClass: Class[_]): DataFrame
Applies a schema to an RDD of Java Beans.
Applies a schema to an RDD of Java Beans.
WARNING: Since there is no guaranteed ordering for fields in a Java Bean, SELECT * queries will return the columns in an undefined order.
- Since
2.0.0
- def createDataFrame(rdd: RDD[_], beanClass: Class[_]): DataFrame
Applies a schema to an RDD of Java Beans.
Applies a schema to an RDD of Java Beans.
WARNING: Since there is no guaranteed ordering for fields in a Java Bean, SELECT * queries will return the columns in an undefined order.
- Since
2.0.0
- def createDataFrame(rows: List[Row], schema: StructType): DataFrame
:: DeveloperApi :: Creates a
DataFrame
from ajava.util.List
containing org.apache.spark.sql.Rows using the given schema.It is important to make sure that the structure of every org.apache.spark.sql.Row of the provided List matches the provided schema.:: DeveloperApi :: Creates a
DataFrame
from ajava.util.List
containing org.apache.spark.sql.Rows using the given schema.It is important to make sure that the structure of every org.apache.spark.sql.Row of the provided List matches the provided schema. Otherwise, there will be runtime exception.- Definition Classes
- SparkSession → SparkSession
- Annotations
- @DeveloperApi()
- def createDataFrame(rowRDD: JavaRDD[Row], schema: StructType): DataFrame
:: DeveloperApi :: Creates a
DataFrame
from aJavaRDD
containing Rows using the given schema. - def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame
:: DeveloperApi :: Creates a
DataFrame
from anRDD
containing Rows using the given schema.:: DeveloperApi :: Creates a
DataFrame
from anRDD
containing Rows using the given schema. It is important to make sure that the structure of every Row of the provided RDD matches the provided schema. Otherwise, there will be runtime exception. Example:import org.apache.spark.sql._ import org.apache.spark.sql.types._ val sparkSession = new org.apache.spark.sql.SparkSession(sc) val schema = StructType( StructField("name", StringType, false) :: StructField("age", IntegerType, true) :: Nil) val people = sc.textFile("examples/src/main/resources/people.txt").map( _.split(",")).map(p => Row(p(0), p(1).trim.toInt)) val dataFrame = sparkSession.createDataFrame(people, schema) dataFrame.printSchema // root // |-- name: string (nullable = false) // |-- age: integer (nullable = true) dataFrame.createOrReplaceTempView("people") sparkSession.sql("select name from people").collect.foreach(println)
- Annotations
- @DeveloperApi()
- Since
2.0.0
- def createDataFrame[A <: Product](data: Seq[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame
Creates a
DataFrame
from a local Seq of Product.Creates a
DataFrame
from a local Seq of Product.- Definition Classes
- SparkSession → SparkSession
- def createDataFrame[A <: Product](rdd: RDD[A])(implicit arg0: scala.reflect.api.JavaUniverse.TypeTag[A]): DataFrame
Creates a
DataFrame
from an RDD of Product (e.g.Creates a
DataFrame
from an RDD of Product (e.g. case classes, tuples).- Since
2.0.0
- def createDataset[T](data: List[T])(implicit arg0: Encoder[T]): Dataset[T]
Creates a Dataset from a
java.util.List
of a given type.Creates a Dataset from a
java.util.List
of a given type. This method requires an encoder (to convert a JVM object of typeT
to and from the internal Spark SQL representation) that is generally created automatically through implicits from aSparkSession
, or can be created explicitly by calling static methods onEncoders
.Java Example
List<String> data = Arrays.asList("hello", "world"); Dataset<String> ds = spark.createDataset(data, Encoders.STRING());
- Definition Classes
- SparkSession → SparkSession
- def createDataset[T](data: RDD[T])(implicit arg0: Encoder[T]): Dataset[T]
Creates a Dataset from an RDD of a given type.
Creates a Dataset from an RDD of a given type. This method requires an encoder (to convert a JVM object of type
T
to and from the internal Spark SQL representation) that is generally created automatically through implicits from aSparkSession
, or can be created explicitly by calling static methods on Encoders.- Since
2.0.0
- def createDataset[T](data: Seq[T])(implicit arg0: Encoder[T]): Dataset[T]
Creates a Dataset from a local Seq of data of a given type.
Creates a Dataset from a local Seq of data of a given type. This method requires an encoder (to convert a JVM object of type
T
to and from the internal Spark SQL representation) that is generally created automatically through implicits from aSparkSession
, or can be created explicitly by calling static methods onEncoders
.Example
import spark.implicits._ case class Person(name: String, age: Long) val data = Seq(Person("Michael", 29), Person("Andy", 30), Person("Justin", 19)) val ds = spark.createDataset(data) ds.show() // +-------+---+ // | name|age| // +-------+---+ // |Michael| 29| // | Andy| 30| // | Justin| 19| // +-------+---+
- Definition Classes
- SparkSession → SparkSession
- def dataSource: DataSourceRegistration
A collection of methods for registering user-defined data sources.
A collection of methods for registering user-defined data sources.
- Annotations
- @Experimental() @Unstable()
- Since
4.0.0
- lazy val emptyDataFrame: DataFrame
Returns a
DataFrame
with no rows or columns.Returns a
DataFrame
with no rows or columns.- Definition Classes
- SparkSession → SparkSession
- Annotations
- @transient()
- def emptyDataset[T](implicit arg0: Encoder[T]): Dataset[T]
Creates a new Dataset of type T containing zero elements.
Creates a new Dataset of type T containing zero elements.
- Definition Classes
- SparkSession → SparkSession
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- def executeCommand(runner: String, command: String, options: Map[String, String]): DataFrame
Execute an arbitrary string command inside an external execution engine rather than Spark.
Execute an arbitrary string command inside an external execution engine rather than Spark. This could be useful when user wants to execute some commands out of Spark. For example, executing custom DDL/DML command for JDBC, creating index for ElasticSearch, creating cores for Solr and so on.
The command will be eagerly executed after this method is called and the returned DataFrame will contain the output of the command(if any).
- runner
The class name of the runner that implements
ExternalCommandRunner
.- command
The target command to be executed
- options
The options for the runner.
- Annotations
- @Unstable()
- Since
3.0.0
- def experimental: ExperimentalMethods
:: Experimental :: A collection of methods that are considered experimental, but can be used to hook into the query planner for advanced functionality.
:: Experimental :: A collection of methods that are considered experimental, but can be used to hook into the query planner for advanced functionality.
- Annotations
- @Experimental() @Unstable()
- Since
2.0.0
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
- def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
- def listenerManager: ExecutionListenerManager
An interface to register custom org.apache.spark.sql.util.QueryExecutionListeners that listen for execution metrics.
An interface to register custom org.apache.spark.sql.util.QueryExecutionListeners that listen for execution metrics.
- Since
2.0.0
- def log: Logger
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logDebug(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logError(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logInfo(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logName: String
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logTrace(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(entry: LogEntry): Unit
- Attributes
- protected
- Definition Classes
- Logging
- def logWarning(msg: => String): Unit
- Attributes
- protected
- Definition Classes
- Logging
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def newSession(): SparkSession
Start a new session with isolated SQL configurations, temporary tables, registered functions are isolated, but sharing the underlying
SparkContext
and cached data.Start a new session with isolated SQL configurations, temporary tables, registered functions are isolated, but sharing the underlying
SparkContext
and cached data.- Definition Classes
- SparkSession → SparkSession
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
- def parseDataType(dataTypeString: String): DataType
Parses the data type in our internal string representation.
Parses the data type in our internal string representation. The data type string should have the same format as the one generated by
toString
in scala. It is only used by PySpark.- Attributes
- protected[sql]
- def range(start: Long, end: Long, step: Long, numPartitions: Int): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value, with partition number specified.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value, with partition number specified.- Definition Classes
- SparkSession → SparkSession
- def range(start: Long, end: Long, step: Long): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with a step value.- Definition Classes
- SparkSession → SparkSession
- def range(start: Long, end: Long): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with step value 1.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range fromstart
toend
(exclusive) with step value 1.- Definition Classes
- SparkSession → SparkSession
- def range(end: Long): Dataset[Long]
Creates a Dataset with a single
LongType
column namedid
, containing elements in a range from 0 toend
(exclusive) with step value 1.Creates a Dataset with a single
LongType
column namedid
, containing elements in a range from 0 toend
(exclusive) with step value 1.- Definition Classes
- SparkSession → SparkSession
- def read: DataFrameReader
Returns a DataFrameReader that can be used to read non-streaming data in as a
DataFrame
.Returns a DataFrameReader that can be used to read non-streaming data in as a
DataFrame
.sparkSession.read.parquet("/path/to/file.parquet") sparkSession.read.schema(schema).json("/path/to/file.json")
- Definition Classes
- SparkSession → SparkSession
- def readStream: DataStreamReader
Returns a
DataStreamReader
that can be used to read streaming data in as aDataFrame
.Returns a
DataStreamReader
that can be used to read streaming data in as aDataFrame
.sparkSession.readStream.parquet("/path/to/directory/of/parquet/files") sparkSession.readStream.schema(schema).json("/path/to/directory/of/json/files")
- Since
2.0.0
- lazy val sessionState: SessionState
State isolated across sessions, including SQL configurations, temporary tables, registered functions, and everything else that accepts a org.apache.spark.sql.internal.SQLConf.
State isolated across sessions, including SQL configurations, temporary tables, registered functions, and everything else that accepts a org.apache.spark.sql.internal.SQLConf. If
parentSessionState
is not null, theSessionState
will be a copy of the parent.This is internal to Spark and there is no guarantee on interface stability.
- Annotations
- @Unstable() @transient()
- Since
2.2.0
- lazy val sharedState: SharedState
State shared across sessions, including the
SparkContext
, cached data, listener, and a catalog that interacts with external systems.State shared across sessions, including the
SparkContext
, cached data, listener, and a catalog that interacts with external systems.This is internal to Spark and there is no guarantee on interface stability.
- Annotations
- @Unstable() @transient()
- Since
2.2.0
- val sparkContext: SparkContext
- def sql(sqlText: String): DataFrame
Executes a SQL query using Spark, returning the result as a
DataFrame
.Executes a SQL query using Spark, returning the result as a
DataFrame
. This API eagerly runs DDL/DML commands, but not for SELECT queries.- Definition Classes
- SparkSession → SparkSession
- def sql(sqlText: String, args: Map[String, Any]): DataFrame
Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
.Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
. This API eagerly runs DDL/DML commands, but not for SELECT queries.- sqlText
A SQL statement with named parameters to execute.
- args
A map of parameter names to Java/Scala objects that can be converted to SQL literal expressions. See Supported Data Types for supported value types in Scala/Java. For example, map keys: "rank", "name", "birthdate"; map values: 1, "Steven", LocalDate.of(2023, 4, 2). Map value can be also a
Column
of a literal or collection constructor functions such asmap()
,array()
,struct()
, in that case it is taken as is.
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental()
- def sql(sqlText: String, args: Map[String, Any]): DataFrame
Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
.Executes a SQL query substituting named parameters by the given arguments, returning the result as a
DataFrame
. This API eagerly runs DDL/DML commands, but not for SELECT queries.- sqlText
A SQL statement with named parameters to execute.
- args
A map of parameter names to Java/Scala objects that can be converted to SQL literal expressions. See Supported Data Types for supported value types in Scala/Java. For example, map keys: "rank", "name", "birthdate"; map values: 1, "Steven", LocalDate.of(2023, 4, 2). Map value can be also a
Column
of a literal or collection constructor functions such asmap()
,array()
,struct()
, in that case it is taken as is.
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental()
- def sql(sqlText: String, args: Array[_]): DataFrame
Executes a SQL query substituting positional parameters by the given arguments, returning the result as a
DataFrame
.Executes a SQL query substituting positional parameters by the given arguments, returning the result as a
DataFrame
. This API eagerly runs DDL/DML commands, but not for SELECT queries.- sqlText
A SQL statement with positional parameters to execute.
- args
An array of Java/Scala objects that can be converted to SQL literal expressions. See <a href="https://spark.apache.org/docs/latest/sql-ref-datatypes.html"> Supported Data Types for supported value types in Scala/Java. For example, 1, "Steven", LocalDate.of(2023, 4, 2). A value can be also a
Column
of a literal or collection constructor functions such asmap()
,array()
,struct()
, in that case it is taken as is.
- Definition Classes
- SparkSession → SparkSession
- Annotations
- @Experimental()
- val sqlContext: SQLContext
A wrapped version of this session in the form of a SQLContext, for backward compatibility.
A wrapped version of this session in the form of a SQLContext, for backward compatibility.
- Since
2.0.0
- def stop(): Unit
Synonym for
close()
.Synonym for
close()
.- Definition Classes
- SparkSession
- Since
2.0.0
- def streams: StreamingQueryManager
Returns a
StreamingQueryManager
that allows managing all theStreamingQuery
s active onthis
.Returns a
StreamingQueryManager
that allows managing all theStreamingQuery
s active onthis
.- Annotations
- @Unstable()
- Since
2.0.0
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def table(tableName: String): DataFrame
Returns the specified table/view as a
DataFrame
.Returns the specified table/view as a
DataFrame
. If it's a table, it must support batch reading and the returned DataFrame is the batch scan query plan of this table. If it's a view, the returned DataFrame is simply the query plan of the view, which can either be a batch or streaming query plan.- tableName
is either a qualified or unqualified name that designates a table or view. If a database is specified, it identifies the table/view from the database. Otherwise, it first attempts to find a temporary view with the given name and then match the table/view from the current database. Note that, the global temporary view database is also valid here.
- Definition Classes
- SparkSession → SparkSession
- def time[T](f: => T): T
Executes some code block and prints to stdout the time taken to execute the block.
Executes some code block and prints to stdout the time taken to execute the block. This is available in Scala only and is used primarily for interactive testing and debugging.
- Definition Classes
- SparkSession
- Since
2.1.0
- def toString(): String
- Definition Classes
- AnyRef → Any
- def udf: UDFRegistration
A collection of methods for registering user-defined functions (UDF).
A collection of methods for registering user-defined functions (UDF).
The following example registers a Scala closure as UDF:
sparkSession.udf.register("myUDF", (arg1: Int, arg2: String) => arg2 + arg1)
The following example registers a UDF in Java:
sparkSession.udf().register("myUDF", (Integer arg1, String arg2) -> arg2 + arg1, DataTypes.StringType);
- Definition Classes
- SparkSession → SparkSession
- def version: String
The version of Spark on which this application is running.
The version of Spark on which this application is running.
- Definition Classes
- SparkSession → SparkSession
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- def withLogContext(context: HashMap[String, String])(body: => Unit): Unit
- Attributes
- protected
- Definition Classes
- Logging
- object implicits extends SQLImplicits with Serializable
(Scala-specific) Implicit methods available in Scala for converting common Scala objects into
DataFrame
s.(Scala-specific) Implicit methods available in Scala for converting common Scala objects into
DataFrame
s.val sparkSession = SparkSession.builder.getOrCreate() import sparkSession.implicits._
- Since
2.0.0
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
(Since version 9)