Packages

class LinearSVC extends Classifier[Vector, LinearSVC, LinearSVCModel] with LinearSVCParams with DefaultParamsWritable

Linear SVM Classifier

This binary classifier optimizes the Hinge Loss using the OWLQN optimizer. Only supports L2 regularization currently.

Since 3.1.0, it supports stacking instances into blocks and using GEMV for better performance. The block size will be 1.0 MB, if param maxBlockSizeInMB is set 0.0 by default.

Annotations
@Since( "2.2.0" )
Source
LinearSVC.scala
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. LinearSVC
  2. DefaultParamsWritable
  3. MLWritable
  4. LinearSVCParams
  5. HasMaxBlockSizeInMB
  6. HasThreshold
  7. HasAggregationDepth
  8. HasWeightCol
  9. HasStandardization
  10. HasTol
  11. HasFitIntercept
  12. HasMaxIter
  13. HasRegParam
  14. Classifier
  15. ClassifierParams
  16. HasRawPredictionCol
  17. Predictor
  18. PredictorParams
  19. HasPredictionCol
  20. HasFeaturesCol
  21. HasLabelCol
  22. Estimator
  23. PipelineStage
  24. Logging
  25. Params
  26. Serializable
  27. Serializable
  28. Identifiable
  29. AnyRef
  30. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LinearSVC()
    Annotations
    @Since( "2.2.0" )
  2. new LinearSVC(uid: String)
    Annotations
    @Since( "2.2.0" )

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T

    An alias for getOrDefault().

    An alias for getOrDefault().

    Attributes
    protected
    Definition Classes
    Params
  4. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  5. final val aggregationDepth: IntParam

    Param for suggested depth for treeAggregate (>= 2).

    Param for suggested depth for treeAggregate (>= 2).

    Definition Classes
    HasAggregationDepth
  6. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  7. final def clear(param: Param[_]): LinearSVC.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  8. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  9. def copy(extra: ParamMap): LinearSVC

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    LinearSVCPredictorEstimatorPipelineStageParams
    Annotations
    @Since( "2.2.0" )
  10. def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T

    Copies param values from this instance to another instance for params shared by them.

    Copies param values from this instance to another instance for params shared by them.

    This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and to paramMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.

    to

    the target instance, which should work with the same set of default Params as this source instance

    extra

    extra params to be copied to the target's paramMap

    returns

    the target instance with param values copied

    Attributes
    protected
    Definition Classes
    Params
  11. final def defaultCopy[T <: Params](extra: ParamMap): T

    Default implementation of copy with extra params.

    Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.

    Attributes
    protected
    Definition Classes
    Params
  12. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  13. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  14. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  15. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  16. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  17. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  18. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  19. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  20. def fit(dataset: Dataset[_]): LinearSVCModel

    Fits a model to the input data.

    Fits a model to the input data.

    Definition Classes
    PredictorEstimator
  21. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[LinearSVCModel]

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  22. def fit(dataset: Dataset[_], paramMap: ParamMap): LinearSVCModel

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    Parameter map. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  23. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): LinearSVCModel

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    firstParamPair

    the first param pair, overrides embedded params

    otherParamPairs

    other param pairs. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  24. final val fitIntercept: BooleanParam

    Param for whether to fit an intercept term.

    Param for whether to fit an intercept term.

    Definition Classes
    HasFitIntercept
  25. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  26. final def getAggregationDepth: Int

    Definition Classes
    HasAggregationDepth
  27. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  28. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  29. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  30. final def getFitIntercept: Boolean

    Definition Classes
    HasFitIntercept
  31. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  32. final def getMaxBlockSizeInMB: Double

    Definition Classes
    HasMaxBlockSizeInMB
  33. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  34. def getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): Int

    Get the number of classes.

    Get the number of classes. This looks in column metadata first, and if that is missing, then this assumes classes are indexed 0,1,...,numClasses-1 and computes numClasses by finding the maximum label value.

    Label validation (ensuring all labels are integers >= 0) needs to be handled elsewhere, such as in extractLabeledPoints().

    dataset

    Dataset which contains a column labelCol

    maxNumClasses

    Maximum number of classes allowed when inferred from data. If numClasses is specified in the metadata, then maxNumClasses is ignored.

    returns

    number of classes

    Attributes
    protected
    Definition Classes
    Classifier
    Exceptions thrown

    IllegalArgumentException if metadata does not specify numClasses, and the actual numClasses exceeds maxNumClasses

  35. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  36. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  37. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  38. final def getRawPredictionCol: String

    Definition Classes
    HasRawPredictionCol
  39. final def getRegParam: Double

    Definition Classes
    HasRegParam
  40. final def getStandardization: Boolean

    Definition Classes
    HasStandardization
  41. def getThreshold: Double

    Definition Classes
    HasThreshold
  42. final def getTol: Double

    Definition Classes
    HasTol
  43. final def getWeightCol: String

    Definition Classes
    HasWeightCol
  44. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  45. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  46. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  47. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  48. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  49. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  50. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  51. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  52. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  53. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  54. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  55. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  56. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  57. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  58. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  59. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  60. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  61. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  62. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  63. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  64. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  65. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  66. final val maxBlockSizeInMB: DoubleParam

    Param for Maximum memory in MB for stacking input data into blocks.

    Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..

    Definition Classes
    HasMaxBlockSizeInMB
  67. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  68. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  69. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  70. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  71. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  72. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  73. final val rawPredictionCol: Param[String]

    Param for raw prediction (a.k.a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  74. final val regParam: DoubleParam

    Param for regularization parameter (>= 0).

    Param for regularization parameter (>= 0).

    Definition Classes
    HasRegParam
  75. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  76. final def set(paramPair: ParamPair[_]): LinearSVC.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  77. final def set(param: String, value: Any): LinearSVC.this.type

    Sets a parameter (by name) in the embedded param map.

    Sets a parameter (by name) in the embedded param map.

    Attributes
    protected
    Definition Classes
    Params
  78. final def set[T](param: Param[T], value: T): LinearSVC.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  79. def setAggregationDepth(value: Int): LinearSVC.this.type

    Suggested depth for treeAggregate (greater than or equal to 2).

    Suggested depth for treeAggregate (greater than or equal to 2). If the dimensions of features or the number of partitions are large, this param could be adjusted to a larger size. Default is 2.

    Annotations
    @Since( "2.2.0" )
  80. final def setDefault(paramPairs: ParamPair[_]*): LinearSVC.this.type

    Sets default values for a list of params.

    Sets default values for a list of params.

    Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.

    paramPairs

    a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.

    Attributes
    protected
    Definition Classes
    Params
  81. final def setDefault[T](param: Param[T], value: T): LinearSVC.this.type

    Sets a default value for a param.

    Sets a default value for a param.

    param

    param to set the default value. Make sure that this param is initialized before this method gets called.

    value

    the default value

    Attributes
    protected[ml]
    Definition Classes
    Params
  82. def setFeaturesCol(value: String): LinearSVC

    Definition Classes
    Predictor
  83. def setFitIntercept(value: Boolean): LinearSVC.this.type

    Whether to fit an intercept term.

    Whether to fit an intercept term. Default is true.

    Annotations
    @Since( "2.2.0" )
  84. def setLabelCol(value: String): LinearSVC

    Definition Classes
    Predictor
  85. def setMaxBlockSizeInMB(value: Double): LinearSVC.this.type

    Sets the value of param maxBlockSizeInMB.

    Sets the value of param maxBlockSizeInMB. Default is 0.0, then 1.0 MB will be chosen.

    Annotations
    @Since( "3.1.0" )
  86. def setMaxIter(value: Int): LinearSVC.this.type

    Set the maximum number of iterations.

    Set the maximum number of iterations. Default is 100.

    Annotations
    @Since( "2.2.0" )
  87. def setPredictionCol(value: String): LinearSVC

    Definition Classes
    Predictor
  88. def setRawPredictionCol(value: String): LinearSVC

    Definition Classes
    Classifier
  89. def setRegParam(value: Double): LinearSVC.this.type

    Set the regularization parameter.

    Set the regularization parameter. Default is 0.0.

    Annotations
    @Since( "2.2.0" )
  90. def setStandardization(value: Boolean): LinearSVC.this.type

    Whether to standardize the training features before fitting the model.

    Whether to standardize the training features before fitting the model. Default is true.

    Annotations
    @Since( "2.2.0" )
  91. def setThreshold(value: Double): LinearSVC.this.type

    Set threshold in binary classification.

    Set threshold in binary classification.

    Annotations
    @Since( "2.2.0" )
  92. def setTol(value: Double): LinearSVC.this.type

    Set the convergence tolerance of iterations.

    Set the convergence tolerance of iterations. Smaller values will lead to higher accuracy at the cost of more iterations. Default is 1E-6.

    Annotations
    @Since( "2.2.0" )
  93. def setWeightCol(value: String): LinearSVC.this.type

    Set the value of param weightCol.

    Set the value of param weightCol. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.

    Annotations
    @Since( "2.2.0" )
  94. final val standardization: BooleanParam

    Param for whether to standardize the training features before fitting the model.

    Param for whether to standardize the training features before fitting the model.

    Definition Classes
    HasStandardization
  95. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  96. final val threshold: DoubleParam

    Param for threshold in binary classification prediction.

    Param for threshold in binary classification prediction. For LinearSVC, this threshold is applied to the rawPrediction, rather than a probability. This threshold can be any real number, where Inf will make all predictions 0.0 and -Inf will make all predictions 1.0. Default: 0.0

    Definition Classes
    LinearSVCParams → HasThreshold
  97. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  98. final val tol: DoubleParam

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Definition Classes
    HasTol
  99. def train(dataset: Dataset[_]): LinearSVCModel

    Train a model using the given dataset and parameters.

    Train a model using the given dataset and parameters. Developers can implement this instead of fit() to avoid dealing with schema validation and copying parameters into the model.

    dataset

    Training dataset

    returns

    Fitted model

    Attributes
    protected
    Definition Classes
    LinearSVCPredictor
  100. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    PredictorPipelineStage
  101. def transformSchema(schema: StructType, logging: Boolean): StructType

    :: DeveloperApi ::

    :: DeveloperApi ::

    Derives the output schema from the input schema and parameters, optionally with logging.

    This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.

    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  102. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    LinearSVCIdentifiable
    Annotations
    @Since( "2.2.0" )
  103. def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructType

    Validates and transforms the input schema with the provided param map.

    Validates and transforms the input schema with the provided param map.

    schema

    input schema

    fitting

    whether this is in fitting

    featuresDataType

    SQL DataType for FeaturesType. E.g., VectorUDT for vector features.

    returns

    output schema

    Attributes
    protected
    Definition Classes
    ClassifierParams → PredictorParams
  104. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  105. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  106. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  107. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol
  108. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DefaultParamsWritableMLWritable

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from LinearSVCParams

Inherited from HasMaxBlockSizeInMB

Inherited from HasThreshold

Inherited from HasAggregationDepth

Inherited from HasWeightCol

Inherited from HasStandardization

Inherited from HasTol

Inherited from HasFitIntercept

Inherited from HasMaxIter

Inherited from HasRegParam

Inherited from ClassifierParams

Inherited from HasRawPredictionCol

Inherited from PredictorParams

Inherited from HasPredictionCol

Inherited from HasFeaturesCol

Inherited from HasLabelCol

Inherited from Estimator[LinearSVCModel]

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

Members

Parameter setters

Parameter getters

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

(expert-only) Parameter setters

(expert-only) Parameter getters