Packages

final class OneVsRest extends Estimator[OneVsRestModel] with OneVsRestParams with HasParallelism with MLWritable

Reduction of Multiclass Classification to Binary Classification. Performs reduction using one against all strategy. For a multiclass classification with k classes, train k models (one per class). Each example is scored against all k models and the model with highest score is picked to label the example.

Annotations
@Since( "1.4.0" )
Source
OneVsRest.scala
Linear Supertypes
MLWritable, HasParallelism, OneVsRestParams, HasWeightCol, ClassifierTypeTrait, ClassifierParams, HasRawPredictionCol, PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Estimator[OneVsRestModel], PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. OneVsRest
  2. MLWritable
  3. HasParallelism
  4. OneVsRestParams
  5. HasWeightCol
  6. ClassifierTypeTrait
  7. ClassifierParams
  8. HasRawPredictionCol
  9. PredictorParams
  10. HasPredictionCol
  11. HasFeaturesCol
  12. HasLabelCol
  13. Estimator
  14. PipelineStage
  15. Logging
  16. Params
  17. Serializable
  18. Serializable
  19. Identifiable
  20. AnyRef
  21. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. val classifier: Param[ClassifierType]

    param for the base binary classifier that we reduce multiclass classification into.

    param for the base binary classifier that we reduce multiclass classification into. The base classifier input and output columns are ignored in favor of the ones specified in OneVsRest.

    Definition Classes
    OneVsRestParams
  2. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  3. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  4. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  5. final val rawPredictionCol: Param[String]

    Param for raw prediction (a.k.a.

    Param for raw prediction (a.k.a. confidence) column name.

    Definition Classes
    HasRawPredictionCol
  6. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol

Members

  1. type ClassifierType = Classifier[F, E, M] forSome {type F, type M <: ClassificationModel[F, M], type E <: Classifier[F, E, M]}
    Definition Classes
    ClassifierTypeTrait
  1. final def clear(param: Param[_]): OneVsRest.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): OneVsRest

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    OneVsRestEstimatorPipelineStageParams
    Annotations
    @Since( "1.4.1" )
  3. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  4. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  5. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  6. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  7. def fit(dataset: Dataset[_]): OneVsRestModel

    Fits a model to the input data.

    Fits a model to the input data.

    Definition Classes
    OneVsRestEstimator
    Annotations
    @Since( "2.0.0" )
  8. def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[OneVsRestModel]

    Fits multiple models to the input data with multiple sets of parameters.

    Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.

    dataset

    input dataset

    paramMaps

    An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted models, matching the input parameter maps

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  9. def fit(dataset: Dataset[_], paramMap: ParamMap): OneVsRestModel

    Fits a single model to the input data with provided parameter map.

    Fits a single model to the input data with provided parameter map.

    dataset

    input dataset

    paramMap

    Parameter map. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" )
  10. def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): OneVsRestModel

    Fits a single model to the input data with optional parameters.

    Fits a single model to the input data with optional parameters.

    dataset

    input dataset

    firstParamPair

    the first param pair, overrides embedded params

    otherParamPairs

    other param pairs. These values override any specified in this Estimator's embedded ParamMap.

    returns

    fitted model

    Definition Classes
    Estimator
    Annotations
    @Since( "2.0.0" ) @varargs()
  11. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  12. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  13. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  14. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  15. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  16. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  17. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  18. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  19. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  20. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  21. final def set[T](param: Param[T], value: T): OneVsRest.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  22. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  23. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    OneVsRestPipelineStage
    Annotations
    @Since( "1.4.0" )
  24. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    OneVsRestIdentifiable
    Annotations
    @Since( "1.4.0" )
  25. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    OneVsRestMLWritable
    Annotations
    @Since( "2.0.0" )

Parameter setters

  1. def setClassifier(value: Classifier[_, _, _]): OneVsRest.this.type

    Annotations
    @Since( "1.4.0" )
  2. def setFeaturesCol(value: String): OneVsRest.this.type

    Annotations
    @Since( "1.5.0" )
  3. def setLabelCol(value: String): OneVsRest.this.type

    Annotations
    @Since( "1.5.0" )
  4. def setPredictionCol(value: String): OneVsRest.this.type

    Annotations
    @Since( "1.5.0" )
  5. def setRawPredictionCol(value: String): OneVsRest.this.type

    Annotations
    @Since( "2.4.0" )
  6. def setWeightCol(value: String): OneVsRest.this.type

    Sets the value of param weightCol.

    Sets the value of param weightCol.

    This is ignored if weight is not supported by classifier. If this is not set or empty, we treat all instance weights as 1.0. Default is not set, so all instances have weight one.

    Annotations
    @Since( "2.3.0" )

Parameter getters

  1. def getClassifier: ClassifierType

    Definition Classes
    OneVsRestParams
  2. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  3. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  4. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  5. final def getRawPredictionCol: String

    Definition Classes
    HasRawPredictionCol
  6. final def getWeightCol: String

    Definition Classes
    HasWeightCol

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. val parallelism: IntParam

    The number of threads to use when running parallel algorithms.

    The number of threads to use when running parallel algorithms. Default is 1 for serial execution

    Definition Classes
    HasParallelism

(expert-only) Parameter setters

  1. def setParallelism(value: Int): OneVsRest.this.type

    The implementation of parallel one vs.

    The implementation of parallel one vs. rest runs the classification for each class in a separate threads.

    Annotations
    @Since( "2.3.0" )

(expert-only) Parameter getters

  1. def getParallelism: Int

    Definition Classes
    HasParallelism