class BucketedRandomProjectionLSHModel extends LSHModel[BucketedRandomProjectionLSHModel] with BucketedRandomProjectionLSHParams
Model produced by BucketedRandomProjectionLSH, where multiple random vectors are stored. The
vectors are normalized to be unit vectors and each vector is used in a hash function:
h_i(x) = floor(r_i.dot(x) / bucketLength)
where r_i
is the i-th random unit vector. The number of buckets will be (max L2 norm of input
vectors) / bucketLength
.
- Annotations
- @Since( "2.1.0" )
- Source
- BucketedRandomProjectionLSH.scala
- Grouped
- Alphabetic
- By Inheritance
- BucketedRandomProjectionLSHModel
- BucketedRandomProjectionLSHParams
- LSHModel
- MLWritable
- LSHParams
- HasOutputCol
- HasInputCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
approxNearestNeighbors(dataset: Dataset[_], key: Vector, numNearestNeighbors: Int): Dataset[_]
Overloaded method for approxNearestNeighbors.
Overloaded method for approxNearestNeighbors. Use "distCol" as default distCol.
- Definition Classes
- LSHModel
-
def
approxNearestNeighbors(dataset: Dataset[_], key: Vector, numNearestNeighbors: Int, distCol: String): Dataset[_]
Given a large dataset and an item, approximately find at most k items which have the closest distance to the item.
Given a large dataset and an item, approximately find at most k items which have the closest distance to the item. If the outputCol is missing, the method will transform the data; if the outputCol exists, it will use the outputCol. This allows caching of the transformed data when necessary.
- dataset
The dataset to search for nearest neighbors of the key.
- key
Feature vector representing the item to search for.
- numNearestNeighbors
The maximum number of nearest neighbors.
- distCol
Output column for storing the distance between each result row and the key.
- returns
A dataset containing at most k items closest to the key. A column "distCol" is added to show the distance between each row and the key.
- Definition Classes
- LSHModel
- Note
This method is experimental and will likely change behavior in the next release.
-
def
approxSimilarityJoin(datasetA: Dataset[_], datasetB: Dataset[_], threshold: Double): Dataset[_]
Overloaded method for approxSimilarityJoin.
Overloaded method for approxSimilarityJoin. Use "distCol" as default distCol.
- Definition Classes
- LSHModel
-
def
approxSimilarityJoin(datasetA: Dataset[_], datasetB: Dataset[_], threshold: Double, distCol: String): Dataset[_]
Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold.
Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold. If the outputCol is missing, the method will transform the data; if the outputCol exists, it will use the outputCol. This allows caching of the transformed data when necessary.
- datasetA
One of the datasets to join.
- datasetB
Another dataset to join.
- threshold
The threshold for the distance of row pairs.
- distCol
Output column for storing the distance between each pair of rows.
- returns
A joined dataset containing pairs of rows. The original rows are in columns "datasetA" and "datasetB", and a column "distCol" is added to show the distance between each pair.
- Definition Classes
- LSHModel
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
val
bucketLength: DoubleParam
The length of each hash bucket, a larger bucket lowers the false negative rate.
The length of each hash bucket, a larger bucket lowers the false negative rate. The number of buckets will be
(max L2 norm of input vectors) / bucketLength
.If input vectors are normalized, 1-10 times of pow(numRecords, -1/inputDim) would be a reasonable value
- Definition Classes
- BucketedRandomProjectionLSHParams
-
final
def
clear(param: Param[_]): BucketedRandomProjectionLSHModel.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @IntrinsicCandidate()
-
def
copy(extra: ParamMap): BucketedRandomProjectionLSHModel
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- BucketedRandomProjectionLSHModel → Model → Transformer → PipelineStage → Params
- Annotations
- @Since( "2.1.0" )
-
def
copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
-
def
explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
-
final
def
get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
-
final
def
getBucketLength: Double
- Definition Classes
- BucketedRandomProjectionLSHParams
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
final
def
getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
-
final
def
getInputCol: String
- Definition Classes
- HasInputCol
-
final
def
getNumHashTables: Int
- Definition Classes
- LSHParams
-
final
def
getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
-
final
def
getOutputCol: String
- Definition Classes
- HasOutputCol
-
def
getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
-
final
def
hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
-
def
hasParent: Boolean
Indicates whether this Model has a corresponding parent.
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
def
hashDistance(x: Array[Vector], y: Array[Vector]): Double
Calculate the distance between two different hash Vectors.
Calculate the distance between two different hash Vectors.
- x
One of the hash vector.
- y
Another hash vector.
- returns
The distance between hash vectors x and y.
- Attributes
- protected[ml]
- Definition Classes
- BucketedRandomProjectionLSHModel → LSHModel
- Annotations
- @Since( "2.1.0" )
-
def
hashFunction(elems: Vector): Array[Vector]
The hash function of LSH, mapping an input feature vector to multiple hash vectors.
The hash function of LSH, mapping an input feature vector to multiple hash vectors.
- returns
The mapping of LSH function.
- Attributes
- protected[ml]
- Definition Classes
- BucketedRandomProjectionLSHModel → LSHModel
- Annotations
- @Since( "2.1.0" )
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
inputCol: Param[String]
Param for input column name.
Param for input column name.
- Definition Classes
- HasInputCol
-
final
def
isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
keyDistance(x: Vector, y: Vector): Double
Calculate the distance between two different keys using the distance metric corresponding to the hashFunction.
Calculate the distance between two different keys using the distance metric corresponding to the hashFunction.
- x
One input vector in the metric space.
- y
One input vector in the metric space.
- returns
The distance between x and y.
- Attributes
- protected[ml]
- Definition Classes
- BucketedRandomProjectionLSHModel → LSHModel
- Annotations
- @Since( "2.1.0" )
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
final
val
numHashTables: IntParam
Param for the number of hash tables used in LSH OR-amplification.
Param for the number of hash tables used in LSH OR-amplification.
LSH OR-amplification can be used to reduce the false negative rate. Higher values for this param lead to a reduced false negative rate, at the expense of added computational complexity.
- Definition Classes
- LSHParams
-
final
val
outputCol: Param[String]
Param for output column name.
Param for output column name.
- Definition Classes
- HasOutputCol
-
lazy val
params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
-
var
parent: Estimator[BucketedRandomProjectionLSHModel]
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
- Model
- Note
For ensembles' component Models, this value can be null.
-
def
save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
def
set(paramPair: ParamPair[_]): BucketedRandomProjectionLSHModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): BucketedRandomProjectionLSHModel.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): BucketedRandomProjectionLSHModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
-
final
def
setDefault(paramPairs: ParamPair[_]*): BucketedRandomProjectionLSHModel.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): BucketedRandomProjectionLSHModel.this.type
Sets a default value for a param.
-
def
setInputCol(value: String): BucketedRandomProjectionLSHModel.this.type
- Definition Classes
- BucketedRandomProjectionLSHModel → LSHModel
- Annotations
- @Since( "2.4.0" )
-
def
setOutputCol(value: String): BucketedRandomProjectionLSHModel.this.type
- Definition Classes
- BucketedRandomProjectionLSHModel → LSHModel
- Annotations
- @Since( "2.4.0" )
-
def
setParent(parent: Estimator[BucketedRandomProjectionLSHModel]): BucketedRandomProjectionLSHModel
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
- Model
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- BucketedRandomProjectionLSHModel → Identifiable → AnyRef → Any
- Annotations
- @Since( "3.0.0" )
-
def
transform(dataset: Dataset[_]): DataFrame
Transforms the input dataset.
Transforms the input dataset.
- Definition Classes
- LSHModel → Transformer
-
def
transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
input dataset
- paramMap
additional parameters, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" )
-
def
transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
input dataset
- firstParamPair
the first param pair, overwrite embedded params
- otherParamPairs
other param pairs, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since( "2.0.0" ) @varargs()
-
def
transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- LSHModel → PipelineStage
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- BucketedRandomProjectionLSHModel → Identifiable
-
final
def
validateAndTransformSchema(schema: StructType): StructType
Transform the Schema for LSH
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- BucketedRandomProjectionLSHModel → MLWritable
- Annotations
- @Since( "2.1.0" )
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated
Inherited from BucketedRandomProjectionLSHParams
Inherited from LSHModel[BucketedRandomProjectionLSHModel]
Inherited from MLWritable
Inherited from LSHParams
Inherited from HasOutputCol
Inherited from HasInputCol
Inherited from Model[BucketedRandomProjectionLSHModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.