final class UnivariateFeatureSelector extends Estimator[UnivariateFeatureSelectorModel] with UnivariateFeatureSelectorParams with DefaultParamsWritable
Feature selector based on univariate statistical tests against labels. Currently, Spark
supports three Univariate Feature Selectors: chi-squared, ANOVA F-test and F-value.
User can choose Univariate Feature Selector by setting featureType
and labelType
,
and Spark will pick the score function based on the specified featureType
and labelType
.
The following combination of featureType
and labelType
are supported:
featureType
categorical
andlabelType
categorical
: Spark uses chi-squared, i.e. chi2 in sklearn.featureType
continuous
andlabelType
categorical
: Spark uses ANOVA F-test, i.e. f_classif in sklearn.featureType
continuous
andlabelType
continuous
: Spark uses F-value, i.e. f_regression in sklearn.
The UnivariateFeatureSelector
supports different selection modes: numTopFeatures
,
percentile
, fpr
, fdr
, fwe
.
numTopFeatures
chooses a fixed number of top features according to a hypothesis.percentile
is similar but chooses a fraction of all features instead of a fixed number.fpr
chooses all features whose p-value are below a threshold, thus controlling the false positive rate of selection.fdr
uses the Benjamini-Hochberg procedure to choose all features whose false discovery rate is below a threshold.fwe
chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection.
By default, the selection mode is numTopFeatures
.
- Annotations
- @Since( "3.1.1" )
- Source
- UnivariateFeatureSelector.scala
- Grouped
- Alphabetic
- By Inheritance
- UnivariateFeatureSelector
- DefaultParamsWritable
- MLWritable
- UnivariateFeatureSelectorParams
- HasOutputCol
- HasLabelCol
- HasFeaturesCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Instance Constructors
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
$[T](param: Param[T]): T
An alias for
getOrDefault()
.An alias for
getOrDefault()
.- Attributes
- protected
- Definition Classes
- Params
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
final
def
clear(param: Param[_]): UnivariateFeatureSelector.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
-
def
clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native() @IntrinsicCandidate()
-
def
copy(extra: ParamMap): UnivariateFeatureSelector
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- UnivariateFeatureSelector → Estimator → PipelineStage → Params
- Annotations
- @Since( "3.1.1" )
-
def
copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): T
Copies param values from this instance to another instance for params shared by them.
Copies param values from this instance to another instance for params shared by them.
This handles default Params and explicitly set Params separately. Default Params are copied from and to
defaultParamMap
, and explicitly set Params are copied from and toparamMap
. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
the target instance, which should work with the same set of default Params as this source instance
- extra
extra params to be copied to the target's
paramMap
- returns
the target instance with param values copied
- Attributes
- protected
- Definition Classes
- Params
-
final
def
defaultCopy[T <: Params](extra: ParamMap): T
Default implementation of copy with extra params.
Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
-
def
explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
-
final
def
extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
-
final
def
extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
-
final
val
featureType: Param[String]
The feature type.
The feature type. Supported options: "categorical", "continuous"
- Definition Classes
- UnivariateFeatureSelectorParams
- Annotations
- @Since( "3.1.1" )
-
final
val
featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
-
def
fit(dataset: Dataset[_]): UnivariateFeatureSelectorModel
Fits a model to the input data.
Fits a model to the input data.
- Definition Classes
- UnivariateFeatureSelector → Estimator
- Annotations
- @Since( "3.1.1" )
-
def
fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[UnivariateFeatureSelectorModel]
Fits multiple models to the input data with multiple sets of parameters.
Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training.
- dataset
input dataset
- paramMaps
An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted models, matching the input parameter maps
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], paramMap: ParamMap): UnivariateFeatureSelectorModel
Fits a single model to the input data with provided parameter map.
Fits a single model to the input data with provided parameter map.
- dataset
input dataset
- paramMap
Parameter map. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" )
-
def
fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): UnivariateFeatureSelectorModel
Fits a single model to the input data with optional parameters.
Fits a single model to the input data with optional parameters.
- dataset
input dataset
- firstParamPair
the first param pair, overrides embedded params
- otherParamPairs
other param pairs. These values override any specified in this Estimator's embedded ParamMap.
- returns
fitted model
- Definition Classes
- Estimator
- Annotations
- @Since( "2.0.0" ) @varargs()
-
final
def
get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
final
def
getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
-
def
getFeatureType: String
- Definition Classes
- UnivariateFeatureSelectorParams
- Annotations
- @Since( "3.1.1" )
-
final
def
getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
-
final
def
getLabelCol: String
- Definition Classes
- HasLabelCol
-
def
getLabelType: String
- Definition Classes
- UnivariateFeatureSelectorParams
- Annotations
- @Since( "3.1.1" )
-
final
def
getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
-
final
def
getOutputCol: String
- Definition Classes
- HasOutputCol
-
def
getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
-
def
getSelectionMode: String
- Definition Classes
- UnivariateFeatureSelectorParams
- Annotations
- @Since( "3.1.1" )
-
def
getSelectionThreshold: Double
- Definition Classes
- UnivariateFeatureSelectorParams
-
final
def
hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
-
def
hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @IntrinsicCandidate()
-
def
initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
def
initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
final
def
isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
-
def
isTraceEnabled(): Boolean
- Attributes
- protected
- Definition Classes
- Logging
-
final
val
labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
-
final
val
labelType: Param[String]
The label type.
The label type. Supported options: "categorical", "continuous"
- Definition Classes
- UnivariateFeatureSelectorParams
- Annotations
- @Since( "3.1.1" )
-
def
log: Logger
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logDebug(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logError(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logInfo(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logName: String
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logTrace(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String, throwable: Throwable): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
def
logWarning(msg: ⇒ String): Unit
- Attributes
- protected
- Definition Classes
- Logging
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @IntrinsicCandidate()
-
final
val
outputCol: Param[String]
Param for output column name.
Param for output column name.
- Definition Classes
- HasOutputCol
-
lazy val
params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
-
def
save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since( "1.6.0" ) @throws( ... )
-
final
val
selectionMode: Param[String]
The selection mode.
The selection mode. Supported options: "numTopFeatures" (default), "percentile", "fpr", "fdr", "fwe"
- Definition Classes
- UnivariateFeatureSelectorParams
- Annotations
- @Since( "3.1.1" )
-
final
val
selectionThreshold: DoubleParam
The upper bound of the features that selector will select.
The upper bound of the features that selector will select.
- Definition Classes
- UnivariateFeatureSelectorParams
- Annotations
- @Since( "3.1.1" )
-
final
def
set(paramPair: ParamPair[_]): UnivariateFeatureSelector.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set(param: String, value: Any): UnivariateFeatureSelector.this.type
Sets a parameter (by name) in the embedded param map.
Sets a parameter (by name) in the embedded param map.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
set[T](param: Param[T], value: T): UnivariateFeatureSelector.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
-
final
def
setDefault(paramPairs: ParamPair[_]*): UnivariateFeatureSelector.this.type
Sets default values for a list of params.
Sets default values for a list of params.
Note: Java developers should use the single-parameter
setDefault
. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called.
- Attributes
- protected
- Definition Classes
- Params
-
final
def
setDefault[T](param: Param[T], value: T): UnivariateFeatureSelector.this.type
Sets a default value for a param.
-
def
setFeatureType(value: String): UnivariateFeatureSelector.this.type
- Annotations
- @Since( "3.1.1" )
-
def
setFeaturesCol(value: String): UnivariateFeatureSelector.this.type
- Annotations
- @Since( "3.1.1" )
-
def
setLabelCol(value: String): UnivariateFeatureSelector.this.type
- Annotations
- @Since( "3.1.1" )
-
def
setLabelType(value: String): UnivariateFeatureSelector.this.type
- Annotations
- @Since( "3.1.1" )
-
def
setOutputCol(value: String): UnivariateFeatureSelector.this.type
- Annotations
- @Since( "3.1.1" )
-
def
setSelectionMode(value: String): UnivariateFeatureSelector.this.type
- Annotations
- @Since( "3.1.1" )
-
def
setSelectionThreshold(value: Double): UnivariateFeatureSelector.this.type
- Annotations
- @Since( "3.1.1" )
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- Identifiable → AnyRef → Any
-
def
transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- UnivariateFeatureSelector → PipelineStage
- Annotations
- @Since( "3.1.1" )
-
def
transformSchema(schema: StructType, logging: Boolean): StructType
:: DeveloperApi ::
:: DeveloperApi ::
Derives the output schema from the input schema and parameters, optionally with logging.
This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise.
- Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
-
val
uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- UnivariateFeatureSelector → Identifiable
- Annotations
- @Since( "3.1.1" )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... ) @native()
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
def
write: MLWriter
Returns an
MLWriter
instance for this ML instance.Returns an
MLWriter
instance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
Deprecated Value Members
-
def
finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] ) @Deprecated
- Deprecated
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from UnivariateFeatureSelectorParams
Inherited from HasOutputCol
Inherited from HasLabelCol
Inherited from HasFeaturesCol
Inherited from Estimator[UnivariateFeatureSelectorModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.