public abstract class Evaluator extends Object implements Params
| Constructor and Description | 
|---|
Evaluator()  | 
| Modifier and Type | Method and Description | 
|---|---|
abstract Evaluator | 
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params. 
 | 
abstract double | 
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric. 
 | 
double | 
evaluate(Dataset<?> dataset,
        ParamMap paramMap)
Evaluates model output and returns a scalar metric. 
 | 
boolean | 
isLargerBetter()
Indicates whether the metric returned by  
evaluate should be maximized (true, default)
 or minimized (false). | 
Param<?>[] | 
params()
Returns all params sorted by their names. 
 | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultCopy, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, set, set, set, setDefault, setDefault, shouldOwntoString, uidpublic abstract Evaluator copy(ParamMap extra)
ParamsdefaultCopy().public double evaluate(Dataset<?> dataset, ParamMap paramMap)
isLargerBetter specifies whether larger values are better.
 dataset - a dataset that contains labels/observations and predictions.paramMap - parameter map that specifies the input columns and output metricspublic abstract double evaluate(Dataset<?> dataset)
isLargerBetter specifies whether larger values are better.
 dataset - a dataset that contains labels/observations and predictions.public boolean isLargerBetter()
evaluate should be maximized (true, default)
 or minimized (false).
 A given evaluator may support multiple metrics which may be maximized or minimized.