public class RankingEvaluator extends Evaluator implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
| Constructor and Description | 
|---|
RankingEvaluator()  | 
RankingEvaluator(String uid)  | 
| Modifier and Type | Method and Description | 
|---|---|
RankingEvaluator | 
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params. 
 | 
double | 
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric. 
 | 
int | 
getK()  | 
String | 
getMetricName()  | 
RankingMetrics<Object> | 
getMetrics(Dataset<?> dataset)
Get a RankingMetrics, which can be used to get ranking metrics
 such as meanAveragePrecision, meanAveragePrecisionAtK, etc. 
 | 
boolean | 
isLargerBetter()
Indicates whether the metric returned by  
evaluate should be maximized (true, default)
 or minimized (false). | 
IntParam | 
k()
param for ranking position value used in  
"meanAveragePrecisionAtK", "precisionAtK",
 "ndcgAtK", "recallAtK". | 
Param<String> | 
labelCol()
Param for label column name. 
 | 
static RankingEvaluator | 
load(String path)  | 
Param<String> | 
metricName()
param for metric name in evaluation (supports  
"meanAveragePrecision" (default),
 "meanAveragePrecisionAtK", "precisionAtK", "ndcgAtK", "recallAtK") | 
Param<String> | 
predictionCol()
Param for prediction column name. 
 | 
static MLReader<T> | 
read()  | 
RankingEvaluator | 
setK(int value)  | 
RankingEvaluator | 
setLabelCol(String value)  | 
RankingEvaluator | 
setMetricName(String value)  | 
RankingEvaluator | 
setPredictionCol(String value)  | 
String | 
toString()  | 
String | 
uid()
An immutable unique ID for the object and its derivatives. 
 | 
getPredictionColgetLabelColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnwritesavepublic RankingEvaluator(String uid)
public RankingEvaluator()
public static RankingEvaluator load(String path)
public static MLReader<T> read()
public final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic final Param<String> metricName()
"meanAveragePrecision" (default),
 "meanAveragePrecisionAtK", "precisionAtK", "ndcgAtK", "recallAtK")public String getMetricName()
public RankingEvaluator setMetricName(String value)
public final IntParam k()
"meanAveragePrecisionAtK", "precisionAtK",
 "ndcgAtK", "recallAtK". Must be > 0. The default value is 10.public int getK()
public RankingEvaluator setK(int value)
public RankingEvaluator setPredictionCol(String value)
public RankingEvaluator setLabelCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
 public RankingMetrics<Object> getMetrics(Dataset<?> dataset)
dataset - a dataset that contains labels/observations and predictions.public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
 or minimized (false).
 A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic RankingEvaluator copy(ParamMap extra)
ParamsdefaultCopy().public String toString()
toString in interface IdentifiabletoString in class Object