public class CountVectorizer extends Estimator<CountVectorizerModel> implements CountVectorizerParams, DefaultParamsWritable
CountVectorizerModel.| Constructor and Description |
|---|
CountVectorizer() |
CountVectorizer(String uid) |
| Modifier and Type | Method and Description |
|---|---|
BooleanParam |
binary()
Binary toggle to control the output vector values.
|
CountVectorizer |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
CountVectorizerModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
Param<String> |
inputCol()
Param for input column name.
|
static CountVectorizer |
load(String path) |
DoubleParam |
maxDF()
Specifies the maximum number of different documents a term could appear in to be included
in the vocabulary.
|
DoubleParam |
minDF()
Specifies the minimum number of different documents a term must appear in to be included
in the vocabulary.
|
DoubleParam |
minTF()
Filter to ignore rare words in a document.
|
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<T> |
read() |
CountVectorizer |
setBinary(boolean value) |
CountVectorizer |
setInputCol(String value) |
CountVectorizer |
setMaxDF(double value) |
CountVectorizer |
setMinDF(double value) |
CountVectorizer |
setMinTF(double value) |
CountVectorizer |
setOutputCol(String value) |
CountVectorizer |
setVocabSize(int value) |
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
IntParam |
vocabSize()
Max size of the vocabulary.
|
paramsequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetBinary, getMaxDF, getMinDF, getMinTF, getVocabSize, validateAndTransformSchemagetInputColgetOutputColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic CountVectorizer(String uid)
public CountVectorizer()
public static CountVectorizer load(String path)
public static MLReader<T> read()
public IntParam vocabSize()
CountVectorizerParamsDefault: 2^18^
vocabSize in interface CountVectorizerParamspublic DoubleParam minDF()
CountVectorizerParamsDefault: 1.0
minDF in interface CountVectorizerParamspublic DoubleParam maxDF()
CountVectorizerParamsDefault: (2^63^) - 1
maxDF in interface CountVectorizerParamspublic DoubleParam minTF()
CountVectorizerParams
Note that the parameter is only used in transform of CountVectorizerModel and does not
affect fitting.
Default: 1.0
minTF in interface CountVectorizerParamspublic BooleanParam binary()
CountVectorizerParamsbinary in interface CountVectorizerParamspublic final Param<String> outputCol()
HasOutputColoutputCol in interface HasOutputColpublic final Param<String> inputCol()
HasInputColinputCol in interface HasInputColpublic String uid()
Identifiableuid in interface Identifiablepublic CountVectorizer setInputCol(String value)
public CountVectorizer setOutputCol(String value)
public CountVectorizer setVocabSize(int value)
public CountVectorizer setMinDF(double value)
public CountVectorizer setMaxDF(double value)
public CountVectorizer setMinTF(double value)
public CountVectorizer setBinary(boolean value)
public CountVectorizerModel fit(Dataset<?> dataset)
Estimatorfit in class Estimator<CountVectorizerModel>dataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public CountVectorizer copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Estimator<CountVectorizerModel>extra - (undocumented)