public class CountVectorizerModel extends Model<CountVectorizerModel> implements CountVectorizerParams, MLWritable
| Constructor and Description |
|---|
CountVectorizerModel(String[] vocabulary) |
CountVectorizerModel(String uid,
String[] vocabulary) |
| Modifier and Type | Method and Description |
|---|---|
BooleanParam |
binary()
Binary toggle to control the output vector values.
|
CountVectorizerModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<String> |
inputCol()
Param for input column name.
|
static CountVectorizerModel |
load(String path) |
DoubleParam |
maxDF()
Specifies the maximum number of different documents a term could appear in to be included
in the vocabulary.
|
DoubleParam |
minDF()
Specifies the minimum number of different documents a term must appear in to be included
in the vocabulary.
|
DoubleParam |
minTF()
Filter to ignore rare words in a document.
|
Param<String> |
outputCol()
Param for output column name.
|
static MLReader<CountVectorizerModel> |
read() |
CountVectorizerModel |
setBinary(boolean value) |
CountVectorizerModel |
setInputCol(String value) |
CountVectorizerModel |
setMinTF(double value) |
CountVectorizerModel |
setOutputCol(String value) |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
IntParam |
vocabSize()
Max size of the vocabulary.
|
String[] |
vocabulary() |
MLWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transformparamsgetBinary, getMaxDF, getMinDF, getMinTF, getVocabSize, validateAndTransformSchemagetInputColgetOutputColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnsave$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitializepublic CountVectorizerModel(String uid,
String[] vocabulary)
public CountVectorizerModel(String[] vocabulary)
public static MLReader<CountVectorizerModel> read()
public static CountVectorizerModel load(String path)
public IntParam vocabSize()
CountVectorizerParamsDefault: 2^18^
vocabSize in interface CountVectorizerParamspublic DoubleParam minDF()
CountVectorizerParamsDefault: 1.0
minDF in interface CountVectorizerParamspublic DoubleParam maxDF()
CountVectorizerParamsDefault: (2^63^) - 1
maxDF in interface CountVectorizerParamspublic DoubleParam minTF()
CountVectorizerParams
Note that the parameter is only used in transform of CountVectorizerModel and does not
affect fitting.
Default: 1.0
minTF in interface CountVectorizerParamspublic BooleanParam binary()
CountVectorizerParamsbinary in interface CountVectorizerParamspublic final Param<String> outputCol()
HasOutputColoutputCol in interface HasOutputColpublic final Param<String> inputCol()
HasInputColinputCol in interface HasInputColpublic String uid()
Identifiableuid in interface Identifiablepublic String[] vocabulary()
public CountVectorizerModel setInputCol(String value)
public CountVectorizerModel setOutputCol(String value)
public CountVectorizerModel setMinTF(double value)
public CountVectorizerModel setBinary(boolean value)
public Dataset<Row> transform(Dataset<?> dataset)
Transformertransform in class Transformerdataset - (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate().
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema in class PipelineStageschema - (undocumented)public CountVectorizerModel copy(ParamMap extra)
ParamsdefaultCopy().copy in interface Paramscopy in class Model<CountVectorizerModel>extra - (undocumented)public MLWriter write()
MLWritableMLWriter instance for this ML instance.write in interface MLWritablepublic String toString()
toString in interface IdentifiabletoString in class Object