Packages

class DecisionTreeRegressionModel extends RegressionModel[Vector, DecisionTreeRegressionModel] with DecisionTreeModel with DecisionTreeRegressorParams with MLWritable with Serializable

Decision tree (Wikipedia) model for regression. It supports both continuous and categorical features.

Annotations
@Since("1.4.0")
Source
DecisionTreeRegressor.scala
Linear Supertypes
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. DecisionTreeRegressionModel
  2. MLWritable
  3. DecisionTreeRegressorParams
  4. HasVarianceCol
  5. TreeRegressorParams
  6. HasVarianceImpurity
  7. DecisionTreeParams
  8. HasWeightCol
  9. HasSeed
  10. HasCheckpointInterval
  11. DecisionTreeModel
  12. RegressionModel
  13. PredictionModel
  14. PredictorParams
  15. HasPredictionCol
  16. HasFeaturesCol
  17. HasLabelCol
  18. Model
  19. Transformer
  20. PipelineStage
  21. Logging
  22. Params
  23. Serializable
  24. Identifiable
  25. AnyRef
  26. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val checkpointInterval: IntParam

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1).

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.

    Definition Classes
    HasCheckpointInterval
  2. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  3. final val impurity: Param[String]

    Criterion used for information gain calculation (case-insensitive).

    Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeRegressor, RandomForestRegressor, GBTRegressor and GBTClassifier (since GBTClassificationModel is internally composed of DecisionTreeRegressionModels). Supported: "variance". (default = variance)

    Definition Classes
    HasVarianceImpurity
  4. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  5. final val leafCol: Param[String]

    Leaf indices column name.

    Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "")

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since("3.0.0")
  6. final val maxBins: IntParam

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32)

    Definition Classes
    DecisionTreeParams
  7. final val maxDepth: IntParam

    Maximum depth of the tree (nonnegative).

    Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)

    Definition Classes
    DecisionTreeParams
  8. final val minInfoGain: DoubleParam

    Minimum information gain for a split to be considered at a tree node.

    Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0)

    Definition Classes
    DecisionTreeParams
  9. final val minInstancesPerNode: IntParam

    Minimum number of instances each child must have after split.

    Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1)

    Definition Classes
    DecisionTreeParams
  10. final val minWeightFractionPerNode: DoubleParam

    Minimum fraction of the weighted sample count that each child must have after split.

    Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0)

    Definition Classes
    DecisionTreeParams
  11. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  12. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  13. final val varianceCol: Param[String]

    Param for Column name for the biased sample variance of prediction.

    Param for Column name for the biased sample variance of prediction.

    Definition Classes
    HasVarianceCol
  14. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol

Members

  1. implicit class LogStringContext extends AnyRef
    Definition Classes
    Logging
  1. final def clear(param: Param[_]): DecisionTreeRegressionModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): DecisionTreeRegressionModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    DecisionTreeRegressionModelModelTransformerPipelineStageParams
    Annotations
    @Since("1.4.0")
  3. lazy val depth: Int

    Depth of the tree.

    Depth of the tree. E.g.: Depth 0 means 1 leaf node. Depth 1 means 1 internal node and 2 leaf nodes.

    Definition Classes
    DecisionTreeModel
  4. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  5. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  6. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  7. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  8. lazy val featureImportances: Vector

    Estimate of the importance of each feature.

    Estimate of the importance of each feature.

    This generalizes the idea of "Gini" importance to other losses, following the explanation of Gini importance from "Random Forests" documentation by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn.

    This feature importance is calculated as follows:

    • importance(feature j) = sum (over nodes which split on feature j) of the gain, where gain is scaled by the number of instances passing through node
    • Normalize importances for tree to sum to 1.
    Annotations
    @Since("2.0.0")
    Note

    Feature importance for single decision trees can have high variance due to correlated predictor variables. Consider using a RandomForestRegressor to determine feature importance instead.

  9. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  10. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  11. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  12. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  13. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  14. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  15. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  16. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  17. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  18. val numFeatures: Int

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    DecisionTreeRegressionModelPredictionModel
  19. def numNodes: Int

    Number of nodes in tree, including leaf nodes.

    Number of nodes in tree, including leaf nodes.

    Definition Classes
    DecisionTreeModel
  20. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  21. var parent: Estimator[DecisionTreeRegressionModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  22. def predict(features: Vector): Double

    Predict label for the given features.

    Predict label for the given features. This method is used to implement transform() and output predictionCol.

    Definition Classes
    DecisionTreeRegressionModelPredictionModel
  23. def predictLeaf(features: Vector): Double

    returns

    The index of the leaf corresponding to the feature vector. Leaves are indexed in pre-order from 0.

    Definition Classes
    DecisionTreeModel
  24. val rootNode: Node

    Root of the decision tree

    Root of the decision tree

    Definition Classes
    DecisionTreeRegressionModel → DecisionTreeModel
  25. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
  26. final def set[T](param: Param[T], value: T): DecisionTreeRegressionModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  27. def setParent(parent: Estimator[DecisionTreeRegressionModel]): DecisionTreeRegressionModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  28. def toDebugString: String

    Full description of model

    Full description of model

    Definition Classes
    DecisionTreeModel
  29. def toString(): String

    Summary of the model

    Summary of the model

    Definition Classes
    DecisionTreeRegressionModel → DecisionTreeModel → Identifiable → AnyRef → Any
    Annotations
    @Since("1.4.0")
  30. def transform(dataset: Dataset[_]): DataFrame

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    dataset

    input dataset

    returns

    transformed dataset with predictionCol of type Double

    Definition Classes
    DecisionTreeRegressionModelPredictionModelTransformer
    Annotations
    @Since("2.0.0")
  31. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since("2.0.0")
  32. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since("2.0.0") @varargs()
  33. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    DecisionTreeRegressionModelPredictionModelPipelineStage
    Annotations
    @Since("1.4.0")
  34. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    DecisionTreeRegressionModelIdentifiable
  35. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    DecisionTreeRegressionModelMLWritable
    Annotations
    @Since("2.0.0")

Parameter setters

  1. def setFeaturesCol(value: String): DecisionTreeRegressionModel

    Definition Classes
    PredictionModel
  2. final def setLeafCol(value: String): DecisionTreeRegressionModel.this.type

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since("3.0.0")
  3. def setPredictionCol(value: String): DecisionTreeRegressionModel

    Definition Classes
    PredictionModel
  4. def setVarianceCol(value: String): DecisionTreeRegressionModel.this.type

Parameter getters

  1. final def getCheckpointInterval: Int

    Definition Classes
    HasCheckpointInterval
  2. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  3. final def getImpurity: String

    Definition Classes
    HasVarianceImpurity
  4. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  5. final def getLeafCol: String

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since("3.0.0")
  6. final def getMaxBins: Int

    Definition Classes
    DecisionTreeParams
  7. final def getMaxDepth: Int

    Definition Classes
    DecisionTreeParams
  8. final def getMinInfoGain: Double

    Definition Classes
    DecisionTreeParams
  9. final def getMinInstancesPerNode: Int

    Definition Classes
    DecisionTreeParams
  10. final def getMinWeightFractionPerNode: Double

    Definition Classes
    DecisionTreeParams
  11. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  12. final def getSeed: Long

    Definition Classes
    HasSeed
  13. final def getVarianceCol: String

    Definition Classes
    HasVarianceCol
  14. final def getWeightCol: String

    Definition Classes
    HasWeightCol

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val cacheNodeIds: BooleanParam

    If false, the algorithm will pass trees to executors to match instances with nodes.

    If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)

    Definition Classes
    DecisionTreeParams
  2. final val maxMemoryInMB: IntParam

    Maximum memory in MB allocated to histogram aggregation.

    Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)

    Definition Classes
    DecisionTreeParams

(expert-only) Parameter getters

  1. final def getCacheNodeIds: Boolean

    Definition Classes
    DecisionTreeParams
  2. final def getMaxMemoryInMB: Int

    Definition Classes
    DecisionTreeParams