class LinearRegressionModel extends RegressionModel[Vector, LinearRegressionModel] with LinearRegressionParams with GeneralMLWritable with HasTrainingSummary[LinearRegressionTrainingSummary]
Model produced by LinearRegression.
- Annotations
- @Since("1.3.0")
- Source
- LinearRegression.scala
- Grouped
- Alphabetic
- By Inheritance
- LinearRegressionModel
- HasTrainingSummary
- GeneralMLWritable
- MLWritable
- LinearRegressionParams
- HasMaxBlockSizeInMB
- HasLoss
- HasAggregationDepth
- HasSolver
- HasWeightCol
- HasStandardization
- HasFitIntercept
- HasTol
- HasMaxIter
- HasElasticNetParam
- HasRegParam
- RegressionModel
- PredictionModel
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
- final val elasticNetParam: DoubleParam
Param for the ElasticNet mixing parameter, in range [0, 1].
Param for the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.
- Definition Classes
- HasElasticNetParam
- final val featuresCol: Param[String]
Param for features column name.
Param for features column name.
- Definition Classes
- HasFeaturesCol
- final val fitIntercept: BooleanParam
Param for whether to fit an intercept term.
Param for whether to fit an intercept term.
- Definition Classes
- HasFitIntercept
- final val labelCol: Param[String]
Param for label column name.
Param for label column name.
- Definition Classes
- HasLabelCol
- final val loss: Param[String]
The loss function to be optimized.
The loss function to be optimized. Supported options: "squaredError" and "huber". Default: "squaredError"
- Definition Classes
- LinearRegressionParams → HasLoss
- Annotations
- @Since("2.3.0")
- final val maxIter: IntParam
Param for maximum number of iterations (>= 0).
Param for maximum number of iterations (>= 0).
- Definition Classes
- HasMaxIter
- final val predictionCol: Param[String]
Param for prediction column name.
Param for prediction column name.
- Definition Classes
- HasPredictionCol
- final val regParam: DoubleParam
Param for regularization parameter (>= 0).
Param for regularization parameter (>= 0).
- Definition Classes
- HasRegParam
- final val solver: Param[String]
The solver algorithm for optimization.
The solver algorithm for optimization. Supported options: "l-bfgs", "normal" and "auto". Default: "auto"
- Definition Classes
- LinearRegressionParams → HasSolver
- Annotations
- @Since("1.6.0")
- final val standardization: BooleanParam
Param for whether to standardize the training features before fitting the model.
Param for whether to standardize the training features before fitting the model.
- Definition Classes
- HasStandardization
- final val tol: DoubleParam
Param for the convergence tolerance for iterative algorithms (>= 0).
Param for the convergence tolerance for iterative algorithms (>= 0).
- Definition Classes
- HasTol
- final val weightCol: Param[String]
Param for weight column name.
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.
- Definition Classes
- HasWeightCol
Members
- implicit class LogStringContext extends AnyRef
- Definition Classes
- Logging
- final def clear(param: Param[_]): LinearRegressionModel.this.type
Clears the user-supplied value for the input param.
Clears the user-supplied value for the input param.
- Definition Classes
- Params
- val coefficients: Vector
- Annotations
- @Since("2.0.0")
- def copy(extra: ParamMap): LinearRegressionModel
Creates a copy of this instance with the same UID and some extra params.
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See
defaultCopy()
.- Definition Classes
- LinearRegressionModel → Model → Transformer → PipelineStage → Params
- Annotations
- @Since("1.4.0")
- def evaluate(dataset: Dataset[_]): LinearRegressionSummary
Evaluates the model on a test dataset.
Evaluates the model on a test dataset.
- dataset
Test dataset to evaluate model on.
- Annotations
- @Since("2.0.0")
- def explainParam(param: Param[_]): String
Explains a param.
Explains a param.
- param
input param, must belong to this instance.
- returns
a string that contains the input param name, doc, and optionally its default value and the user-supplied value
- Definition Classes
- Params
- def explainParams(): String
Explains all params of this instance.
Explains all params of this instance. See
explainParam()
.- Definition Classes
- Params
- final def extractParamMap(): ParamMap
extractParamMap
with no extra values.extractParamMap
with no extra values.- Definition Classes
- Params
- final def extractParamMap(extra: ParamMap): ParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.
- Definition Classes
- Params
- final def get[T](param: Param[T]): Option[T]
Optionally returns the user-supplied value of a param.
Optionally returns the user-supplied value of a param.
- Definition Classes
- Params
- final def getDefault[T](param: Param[T]): Option[T]
Gets the default value of a parameter.
Gets the default value of a parameter.
- Definition Classes
- Params
- final def getOrDefault[T](param: Param[T]): T
Gets the value of a param in the embedded param map or its default value.
Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.
- Definition Classes
- Params
- def getParam(paramName: String): Param[Any]
Gets a param by its name.
Gets a param by its name.
- Definition Classes
- Params
- final def hasDefault[T](param: Param[T]): Boolean
Tests whether the input param has a default value set.
Tests whether the input param has a default value set.
- Definition Classes
- Params
- def hasParam(paramName: String): Boolean
Tests whether this instance contains a param with a given name.
Tests whether this instance contains a param with a given name.
- Definition Classes
- Params
- def hasParent: Boolean
Indicates whether this Model has a corresponding parent.
- def hasSummary: Boolean
Indicates whether a training summary exists for this model instance.
Indicates whether a training summary exists for this model instance.
- Definition Classes
- HasTrainingSummary
- Annotations
- @Since("3.0.0")
- val intercept: Double
- Annotations
- @Since("1.3.0")
- final def isDefined(param: Param[_]): Boolean
Checks whether a param is explicitly set or has a default value.
Checks whether a param is explicitly set or has a default value.
- Definition Classes
- Params
- final def isSet(param: Param[_]): Boolean
Checks whether a param is explicitly set.
Checks whether a param is explicitly set.
- Definition Classes
- Params
- val numFeatures: Int
Returns the number of features the model was trained on.
Returns the number of features the model was trained on. If unknown, returns -1
- Definition Classes
- LinearRegressionModel → PredictionModel
- lazy val params: Array[Param[_]]
Returns all params sorted by their names.
Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.
- Definition Classes
- Params
- Note
Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.
- var parent: Estimator[LinearRegressionModel]
The parent estimator that produced this model.
The parent estimator that produced this model.
- Definition Classes
- Model
- Note
For ensembles' component Models, this value can be null.
- def predict(features: Vector): Double
Predict label for the given features.
Predict label for the given features. This method is used to implement
transform()
and output predictionCol.- Definition Classes
- LinearRegressionModel → PredictionModel
- def save(path: String): Unit
Saves this ML instance to the input path, a shortcut of
write.save(path)
.Saves this ML instance to the input path, a shortcut of
write.save(path)
.- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
- val scale: Double
- Annotations
- @Since("2.3.0")
- final def set[T](param: Param[T], value: T): LinearRegressionModel.this.type
Sets a parameter in the embedded param map.
Sets a parameter in the embedded param map.
- Definition Classes
- Params
- def setParent(parent: Estimator[LinearRegressionModel]): LinearRegressionModel
Sets the parent of this model (Java API).
Sets the parent of this model (Java API).
- Definition Classes
- Model
- def summary: LinearRegressionTrainingSummary
Gets summary (e.g.
Gets summary (e.g. residuals, mse, r-squared ) of model on training set. An exception is thrown if
hasSummary
is false.- Definition Classes
- LinearRegressionModel → HasTrainingSummary
- Annotations
- @Since("1.5.0")
- def toString(): String
- Definition Classes
- LinearRegressionModel → Identifiable → AnyRef → Any
- Annotations
- @Since("3.0.0")
- def transform(dataset: Dataset[_]): DataFrame
Transforms dataset by reading from featuresCol, calling
predict
, and storing the predictions as a new column predictionCol.Transforms dataset by reading from featuresCol, calling
predict
, and storing the predictions as a new column predictionCol.- dataset
input dataset
- returns
transformed dataset with predictionCol of type
Double
- Definition Classes
- PredictionModel → Transformer
- def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
Transforms the dataset with provided parameter map as additional parameters.
Transforms the dataset with provided parameter map as additional parameters.
- dataset
input dataset
- paramMap
additional parameters, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
- def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
Transforms the dataset with optional parameters
Transforms the dataset with optional parameters
- dataset
input dataset
- firstParamPair
the first param pair, overwrite embedded params
- otherParamPairs
other param pairs, overwrite embedded params
- returns
transformed dataset
- Definition Classes
- Transformer
- Annotations
- @Since("2.0.0") @varargs()
- def transformSchema(schema: StructType): StructType
Check transform validity and derive the output schema from the input schema.
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Definition Classes
- PredictionModel → PipelineStage
- val uid: String
An immutable unique ID for the object and its derivatives.
An immutable unique ID for the object and its derivatives.
- Definition Classes
- LinearRegressionModel → Identifiable
- Annotations
- @Since("1.4.0")
- def write: GeneralMLWriter
Returns a org.apache.spark.ml.util.GeneralMLWriter instance for this ML instance.
Returns a org.apache.spark.ml.util.GeneralMLWriter instance for this ML instance.
For LinearRegressionModel, this does NOT currently save the training summary. An option to save summary may be added in the future.
This also does not save the parent currently.
- Definition Classes
- LinearRegressionModel → GeneralMLWritable → MLWritable
- Annotations
- @Since("1.6.0")
getExpertParam
- def getEpsilon: Double
- Definition Classes
- LinearRegressionParams
- Annotations
- @Since("2.3.0")
Parameter setters
- def setFeaturesCol(value: String): LinearRegressionModel
- Definition Classes
- PredictionModel
- def setPredictionCol(value: String): LinearRegressionModel
- Definition Classes
- PredictionModel
Parameter getters
- final def getElasticNetParam: Double
- Definition Classes
- HasElasticNetParam
- final def getFeaturesCol: String
- Definition Classes
- HasFeaturesCol
- final def getFitIntercept: Boolean
- Definition Classes
- HasFitIntercept
- final def getLabelCol: String
- Definition Classes
- HasLabelCol
- final def getLoss: String
- Definition Classes
- HasLoss
- final def getMaxIter: Int
- Definition Classes
- HasMaxIter
- final def getPredictionCol: String
- Definition Classes
- HasPredictionCol
- final def getRegParam: Double
- Definition Classes
- HasRegParam
- final def getSolver: String
- Definition Classes
- HasSolver
- final def getStandardization: Boolean
- Definition Classes
- HasStandardization
- final def getTol: Double
- Definition Classes
- HasTol
- final def getWeightCol: String
- Definition Classes
- HasWeightCol
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
- final val aggregationDepth: IntParam
Param for suggested depth for treeAggregate (>= 2).
Param for suggested depth for treeAggregate (>= 2).
- Definition Classes
- HasAggregationDepth
- final val epsilon: DoubleParam
The shape parameter to control the amount of robustness.
The shape parameter to control the amount of robustness. Must be > 1.0. At larger values of epsilon, the huber criterion becomes more similar to least squares regression; for small values of epsilon, the criterion is more similar to L1 regression. Default is 1.35 to get as much robustness as possible while retaining 95% statistical efficiency for normally distributed data. It matches sklearn HuberRegressor and is "M" from A robust hybrid of lasso and ridge regression. Only valid when "loss" is "huber".
- Definition Classes
- LinearRegressionParams
- Annotations
- @Since("2.3.0")
- final val maxBlockSizeInMB: DoubleParam
Param for Maximum memory in MB for stacking input data into blocks.
Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0..
- Definition Classes
- HasMaxBlockSizeInMB
(expert-only) Parameter getters
- final def getAggregationDepth: Int
- Definition Classes
- HasAggregationDepth
- final def getMaxBlockSizeInMB: Double
- Definition Classes
- HasMaxBlockSizeInMB