Class MultilayerPerceptronClassifier
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<M>
org.apache.spark.ml.Predictor<FeaturesType,E,M>
org.apache.spark.ml.classification.Classifier<FeaturesType,E,M>
org.apache.spark.ml.classification.ProbabilisticClassifier<Vector,MultilayerPerceptronClassifier,MultilayerPerceptronClassificationModel>
org.apache.spark.ml.classification.MultilayerPerceptronClassifier
- All Implemented Interfaces:
Serializable,org.apache.spark.internal.Logging,ClassifierParams,MultilayerPerceptronParams,ProbabilisticClassifierParams,Params,HasBlockSize,HasFeaturesCol,HasLabelCol,HasMaxIter,HasPredictionCol,HasProbabilityCol,HasRawPredictionCol,HasSeed,HasSolver,HasStepSize,HasThresholds,HasTol,PredictorParams,DefaultParamsWritable,Identifiable,MLWritable
public class MultilayerPerceptronClassifier
extends ProbabilisticClassifier<Vector,MultilayerPerceptronClassifier,MultilayerPerceptronClassificationModel>
implements MultilayerPerceptronParams, DefaultParamsWritable
Classifier trainer based on the Multilayer Perceptron.
Each layer has sigmoid activation function, output layer has softmax.
Number of inputs has to be equal to the size of feature vectors.
Number of outputs has to be equal to the total number of labels.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter -
Constructor Summary
Constructors -
Method Summary
Modifier and TypeMethodDescriptionfinal IntParamParam for block size for stacking input data in matrices.Creates a copy of this instance with the same UID and some extra params.The initial weights of the model.final IntArrayParamlayers()Layer sizes including input size and output size.final IntParammaxIter()Param for maximum number of iterations (>= 0).static MLReader<T>read()final LongParamseed()Param for random seed.setBlockSize(int value) Sets the value of paramblockSize().setInitialWeights(Vector value) Sets the value of paraminitialWeights().setLayers(int[] value) Sets the value of paramlayers().setMaxIter(int value) Set the maximum number of iterations.setSeed(long value) Set the seed for weights initialization if weights are not setSets the value of paramsolver().setStepSize(double value) Sets the value of paramstepSize()(applicable only for solver "gd").setTol(double value) Set the convergence tolerance of iterations.solver()The solver algorithm for optimization.stepSize()Param for Step size to be used for each iteration of optimization (> 0).final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).uid()An immutable unique ID for the object and its derivatives.Methods inherited from class org.apache.spark.ml.classification.ProbabilisticClassifier
probabilityCol, setProbabilityCol, setThresholds, thresholdsMethods inherited from class org.apache.spark.ml.classification.Classifier
rawPredictionCol, setRawPredictionColMethods inherited from class org.apache.spark.ml.Predictor
featuresCol, fit, labelCol, predictionCol, setFeaturesCol, setLabelCol, setPredictionCol, transformSchemaMethods inherited from class org.apache.spark.ml.PipelineStage
paramsMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.ml.util.DefaultParamsWritable
writeMethods inherited from interface org.apache.spark.ml.param.shared.HasBlockSize
getBlockSizeMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
featuresCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityCol
getProbabilityCol, probabilityColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionCol
getRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasStepSize
getStepSizeMethods inherited from interface org.apache.spark.ml.param.shared.HasThresholds
getThresholds, thresholdsMethods inherited from interface org.apache.spark.ml.util.Identifiable
toStringMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritable
saveMethods inherited from interface org.apache.spark.ml.classification.MultilayerPerceptronParams
getInitialWeights, getLayersMethods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.classification.ProbabilisticClassifierParams
validateAndTransformSchema
-
Constructor Details
-
MultilayerPerceptronClassifier
-
MultilayerPerceptronClassifier
public MultilayerPerceptronClassifier()
-
-
Method Details
-
load
-
read
-
layers
Description copied from interface:MultilayerPerceptronParamsLayer sizes including input size and output size.- Specified by:
layersin interfaceMultilayerPerceptronParams- Returns:
- (undocumented)
-
solver
Description copied from interface:MultilayerPerceptronParamsThe solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"- Specified by:
solverin interfaceHasSolver- Specified by:
solverin interfaceMultilayerPerceptronParams- Returns:
- (undocumented)
-
initialWeights
Description copied from interface:MultilayerPerceptronParamsThe initial weights of the model.- Specified by:
initialWeightsin interfaceMultilayerPerceptronParams- Returns:
- (undocumented)
-
blockSize
Description copied from interface:HasBlockSizeParam for block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data..- Specified by:
blockSizein interfaceHasBlockSize- Returns:
- (undocumented)
-
stepSize
Description copied from interface:HasStepSizeParam for Step size to be used for each iteration of optimization (> 0).- Specified by:
stepSizein interfaceHasStepSize- Returns:
- (undocumented)
-
tol
Description copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0). -
maxIter
Description copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
maxIterin interfaceHasMaxIter- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeedParam for random seed. -
uid
Description copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
uidin interfaceIdentifiable- Returns:
- (undocumented)
-
setLayers
Sets the value of paramlayers().- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setBlockSize
Sets the value of paramblockSize(). Default is 128.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setSolver
Sets the value of paramsolver(). Default is "l-bfgs".- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setMaxIter
Set the maximum number of iterations. Default is 100.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setTol
Set the convergence tolerance of iterations. Smaller value will lead to higher accuracy with the cost of more iterations. Default is 1E-6.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setSeed
Set the seed for weights initialization if weights are not set- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setInitialWeights
Sets the value of paraminitialWeights().- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
setStepSize
Sets the value of paramstepSize()(applicable only for solver "gd"). Default is 0.03.- Parameters:
value- (undocumented)- Returns:
- (undocumented)
-
copy
Description copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
copyin interfaceParams- Specified by:
copyin classPredictor<Vector,MultilayerPerceptronClassifier, MultilayerPerceptronClassificationModel> - Parameters:
extra- (undocumented)- Returns:
- (undocumented)
-