Class MultilayerPerceptronClassificationModel
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<M>
org.apache.spark.ml.PredictionModel<FeaturesType,M>
 
org.apache.spark.ml.classification.ClassificationModel<FeaturesType,M>
 
org.apache.spark.ml.classification.ProbabilisticClassificationModel<Vector,MultilayerPerceptronClassificationModel>
 
org.apache.spark.ml.classification.MultilayerPerceptronClassificationModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- ClassifierParams,- MultilayerPerceptronParams,- ProbabilisticClassifierParams,- Params,- HasBlockSize,- HasFeaturesCol,- HasLabelCol,- HasMaxIter,- HasPredictionCol,- HasProbabilityCol,- HasRawPredictionCol,- HasSeed,- HasSolver,- HasStepSize,- HasThresholds,- HasTol,- PredictorParams,- HasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary>,- Identifiable,- MLWritable
public class MultilayerPerceptronClassificationModel
extends ProbabilisticClassificationModel<Vector,MultilayerPerceptronClassificationModel>
implements MultilayerPerceptronParams, Serializable, MLWritable, HasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary> 
Classification model based on the Multilayer Perceptron.
 Each layer has sigmoid activation function, output layer has softmax.
 
param: uid uid param: weights the weights of layers
- See Also:
- 
Nested Class SummaryNested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionfinal IntParamParam for block size for stacking input data in matrices.Creates a copy of this instance with the same UID and some extra params.Evaluates the model on a test dataset.The initial weights of the model.final IntArrayParamlayers()Layer sizes including input size and output size.final IntParammaxIter()Param for maximum number of iterations (>= 0).intNumber of classes (values which the label can take).intReturns the number of features the model was trained on.doublePredict label for the given features.predictRaw(Vector features) Raw prediction for each possible label.read()final LongParamseed()Param for random seed.solver()The solver algorithm for optimization.stepSize()Param for Step size to be used for each iteration of optimization (> 0).summary()Gets summary of model on training set.final DoubleParamtol()Param for the convergence tolerance for iterative algorithms (>= 0).toString()uid()An immutable unique ID for the object and its derivatives.weights()write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.classification.ProbabilisticClassificationModelnormalizeToProbabilitiesInPlace, predictProbability, probabilityCol, setProbabilityCol, setThresholds, thresholds, transform, transformSchemaMethods inherited from class org.apache.spark.ml.classification.ClassificationModelrawPredictionCol, setRawPredictionCol, transformImplMethods inherited from class org.apache.spark.ml.PredictionModelfeaturesCol, labelCol, predictionCol, setFeaturesCol, setPredictionColMethods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasBlockSizegetBlockSizeMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasMaxItergetMaxIterMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityColgetProbabilityCol, probabilityColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionColgetRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasStepSizegetStepSizeMethods inherited from interface org.apache.spark.ml.param.shared.HasThresholdsgetThresholds, thresholdsMethods inherited from interface org.apache.spark.ml.util.HasTrainingSummaryhasSummary, setSummaryMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.classification.MultilayerPerceptronParamsgetInitialWeights, getLayersMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.classification.ProbabilisticClassifierParamsvalidateAndTransformSchema
- 
Method Details- 
read
- 
load
- 
layersDescription copied from interface:MultilayerPerceptronParamsLayer sizes including input size and output size.- Specified by:
- layersin interface- MultilayerPerceptronParams
- Returns:
- (undocumented)
 
- 
solverDescription copied from interface:MultilayerPerceptronParamsThe solver algorithm for optimization. Supported options: "gd" (minibatch gradient descent) or "l-bfgs". Default: "l-bfgs"- Specified by:
- solverin interface- HasSolver
- Specified by:
- solverin interface- MultilayerPerceptronParams
- Returns:
- (undocumented)
 
- 
initialWeightsDescription copied from interface:MultilayerPerceptronParamsThe initial weights of the model.- Specified by:
- initialWeightsin interface- MultilayerPerceptronParams
- Returns:
- (undocumented)
 
- 
blockSizeDescription copied from interface:HasBlockSizeParam for block size for stacking input data in matrices. Data is stacked within partitions. If block size is more than remaining data in a partition then it is adjusted to the size of this data..- Specified by:
- blockSizein interface- HasBlockSize
- Returns:
- (undocumented)
 
- 
stepSizeDescription copied from interface:HasStepSizeParam for Step size to be used for each iteration of optimization (> 0).- Specified by:
- stepSizein interface- HasStepSize
- Returns:
- (undocumented)
 
- 
tolDescription copied from interface:HasTolParam for the convergence tolerance for iterative algorithms (>= 0).
- 
maxIterDescription copied from interface:HasMaxIterParam for maximum number of iterations (>= 0).- Specified by:
- maxIterin interface- HasMaxIter
- Returns:
- (undocumented)
 
- 
seedDescription copied from interface:HasSeedParam for random seed.
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
weights
- 
numFeaturespublic int numFeatures()Description copied from class:PredictionModelReturns the number of features the model was trained on. If unknown, returns -1- Overrides:
- numFeaturesin class- PredictionModel<Vector,- MultilayerPerceptronClassificationModel> 
 
- 
summaryGets summary of model on training set. An exception is thrown ifhasSummaryis false.- Specified by:
- summaryin interface- HasTrainingSummary<MultilayerPerceptronClassificationTrainingSummary>
- Returns:
- (undocumented)
 
- 
evaluateEvaluates the model on a test dataset.- Parameters:
- dataset- Test dataset to evaluate model on.
- Returns:
- (undocumented)
 
- 
predictPredict label for the given features. This internal method is used to implementtransform()and outputPredictionModel.predictionCol().- Overrides:
- predictin class- ClassificationModel<Vector,- MultilayerPerceptronClassificationModel> 
- Parameters:
- features- (undocumented)
- Returns:
- (undocumented)
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<MultilayerPerceptronClassificationModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
- 
predictRawDescription copied from class:ClassificationModelRaw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implementtransform()and outputClassificationModel.rawPredictionCol().- Specified by:
- predictRawin class- ClassificationModel<Vector,- MultilayerPerceptronClassificationModel> 
- Parameters:
- features- (undocumented)
- Returns:
- vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
 
- 
numClassespublic int numClasses()Description copied from class:ClassificationModelNumber of classes (values which the label can take).- Specified by:
- numClassesin class- ClassificationModel<Vector,- MultilayerPerceptronClassificationModel> 
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
 
-