Class NaiveBayesModel
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<M>
org.apache.spark.ml.PredictionModel<FeaturesType,M>
 
org.apache.spark.ml.classification.ClassificationModel<FeaturesType,M>
 
org.apache.spark.ml.classification.ProbabilisticClassificationModel<Vector,NaiveBayesModel>
 
org.apache.spark.ml.classification.NaiveBayesModel
- All Implemented Interfaces:
- Serializable,- org.apache.spark.internal.Logging,- ClassifierParams,- NaiveBayesParams,- ProbabilisticClassifierParams,- Params,- HasFeaturesCol,- HasLabelCol,- HasPredictionCol,- HasProbabilityCol,- HasRawPredictionCol,- HasThresholds,- HasWeightCol,- PredictorParams,- Identifiable,- MLWritable
public class NaiveBayesModel
extends ProbabilisticClassificationModel<Vector,NaiveBayesModel>
implements NaiveBayesParams, MLWritable 
Model produced by 
NaiveBayes
 param: pi log of class priors, whose dimension is C (number of classes) param: theta log of class conditional probabilities, whose dimension is C (number of classes) by D (number of features) param: sigma variance of each feature, whose dimension is C (number of classes) by D (number of features). This matrix is only available when modelType is set Gaussian.
- See Also:
- 
Nested Class SummaryNested ClassesNested classes/interfaces inherited from interface org.apache.spark.internal.Loggingorg.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
- 
Method SummaryModifier and TypeMethodDescriptionCreates a copy of this instance with the same UID and some extra params.static NaiveBayesModelThe model type which is a string (case-sensitive).intNumber of classes (values which the label can take).intReturns the number of features the model was trained on.pi()predictRaw(Vector features) Raw prediction for each possible label.static MLReader<NaiveBayesModel>read()sigma()final DoubleParamThe smoothing parameter.theta()toString()uid()An immutable unique ID for the object and its derivatives.Param for weight column name.write()Returns anMLWriterinstance for this ML instance.Methods inherited from class org.apache.spark.ml.classification.ProbabilisticClassificationModelnormalizeToProbabilitiesInPlace, predictProbability, probabilityCol, setProbabilityCol, setThresholds, thresholds, transform, transformSchemaMethods inherited from class org.apache.spark.ml.classification.ClassificationModelpredict, rawPredictionCol, setRawPredictionCol, transformImplMethods inherited from class org.apache.spark.ml.PredictionModelfeaturesCol, labelCol, predictionCol, setFeaturesCol, setPredictionColMethods inherited from class org.apache.spark.ml.Transformertransform, transform, transformMethods inherited from class org.apache.spark.ml.PipelineStageparamsMethods inherited from class java.lang.Objectequals, getClass, hashCode, notify, notifyAll, wait, wait, waitMethods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesColfeaturesCol, getFeaturesColMethods inherited from interface org.apache.spark.ml.param.shared.HasLabelColgetLabelCol, labelColMethods inherited from interface org.apache.spark.ml.param.shared.HasPredictionColgetPredictionCol, predictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasProbabilityColgetProbabilityColMethods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionColgetRawPredictionCol, rawPredictionColMethods inherited from interface org.apache.spark.ml.param.shared.HasThresholdsgetThresholdsMethods inherited from interface org.apache.spark.ml.param.shared.HasWeightColgetWeightColMethods inherited from interface org.apache.spark.internal.LogginginitializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContextMethods inherited from interface org.apache.spark.ml.util.MLWritablesaveMethods inherited from interface org.apache.spark.ml.classification.NaiveBayesParamsgetModelType, getSmoothingMethods inherited from interface org.apache.spark.ml.param.Paramsclear, copyValues, defaultCopy, defaultParamMap, estimateMatadataSize, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwnMethods inherited from interface org.apache.spark.ml.classification.ProbabilisticClassifierParamsvalidateAndTransformSchema
- 
Method Details- 
read
- 
load
- 
smoothingDescription copied from interface:NaiveBayesParamsThe smoothing parameter. (default = 1.0).- Specified by:
- smoothingin interface- NaiveBayesParams
- Returns:
- (undocumented)
 
- 
modelTypeDescription copied from interface:NaiveBayesParamsThe model type which is a string (case-sensitive). Supported options: "multinomial", "complement", "bernoulli", "gaussian". (default = multinomial)- Specified by:
- modelTypein interface- NaiveBayesParams
- Returns:
- (undocumented)
 
- 
weightColDescription copied from interface:HasWeightColParam for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
- weightColin interface- HasWeightCol
- Returns:
- (undocumented)
 
- 
uidDescription copied from interface:IdentifiableAn immutable unique ID for the object and its derivatives.- Specified by:
- uidin interface- Identifiable
- Returns:
- (undocumented)
 
- 
pi
- 
theta
- 
sigma
- 
numFeaturespublic int numFeatures()Description copied from class:PredictionModelReturns the number of features the model was trained on. If unknown, returns -1- Overrides:
- numFeaturesin class- PredictionModel<Vector,- NaiveBayesModel> 
 
- 
numClassespublic int numClasses()Description copied from class:ClassificationModelNumber of classes (values which the label can take).- Specified by:
- numClassesin class- ClassificationModel<Vector,- NaiveBayesModel> 
 
- 
predictRawDescription copied from class:ClassificationModelRaw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implementtransform()and outputClassificationModel.rawPredictionCol().- Specified by:
- predictRawin class- ClassificationModel<Vector,- NaiveBayesModel> 
- Parameters:
- features- (undocumented)
- Returns:
- vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
 
- 
copyDescription copied from interface:ParamsCreates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy().- Specified by:
- copyin interface- Params
- Specified by:
- copyin class- Model<NaiveBayesModel>
- Parameters:
- extra- (undocumented)
- Returns:
- (undocumented)
 
- 
toString- Specified by:
- toStringin interface- Identifiable
- Overrides:
- toStringin class- Object
 
- 
writeDescription copied from interface:MLWritableReturns anMLWriterinstance for this ML instance.- Specified by:
- writein interface- MLWritable
- Returns:
- (undocumented)
 
 
-