class FMClassifier extends ProbabilisticClassifier[Vector, FMClassifier, FMClassificationModel] with FactorizationMachines with FMClassifierParams with DefaultParamsWritable with Logging
Factorization Machines learning algorithm for classification. It supports normal gradient descent and AdamW solver.
The implementation is based on: S. Rendle. "Factorization machines" 2010.
FM is able to estimate interactions even in problems with huge sparsity (like advertising and recommendation system). FM formula is:
$$ \begin{align} y = \sigma\left( w_0 + \sum\limits^n_{i-1} w_i x_i + \sum\limits^n_{i=1} \sum\limits^n_{j=i+1} \langle v_i, v_j \rangle x_i x_j \right) \end{align} $$First two terms denote global bias and linear term (as same as linear regression), and last term denotes pairwise interactions term. v_i describes the i-th variable with k factors.
FM classification model uses logistic loss which can be solved by gradient descent method, and regularization terms like L2 are usually added to the loss function to prevent overfitting.
- Annotations
- @Since("3.0.0")
- Source
- FMClassifier.scala
- Note
- Multiclass labels are not currently supported. 
- Grouped
- Alphabetic
- By Inheritance
- FMClassifier
- DefaultParamsWritable
- MLWritable
- FMClassifierParams
- FactorizationMachines
- FactorizationMachinesParams
- HasWeightCol
- HasRegParam
- HasFitIntercept
- HasSeed
- HasSolver
- HasTol
- HasStepSize
- HasMaxIter
- ProbabilisticClassifier
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- Classifier
- ClassifierParams
- HasRawPredictionCol
- Predictor
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Estimator
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def $[T](param: Param[T]): TAn alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-   final  def clear(param: Param[_]): FMClassifier.this.typeClears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def copy(extra: ParamMap): FMClassifierCreates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- FMClassifier → Predictor → Estimator → PipelineStage → Params
- Annotations
- @Since("3.0.0")
 
-    def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): TCopies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def defaultCopy[T <: Params](extra: ParamMap): TDefault implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def estimateModelSize(dataset: Dataset[_]): LongFor ml connect only. For ml connect only. Estimate an upper-bound size of the model to be fitted in bytes, based on the parameters and the dataset, e.g., using $(k) and numFeatures to estimate a k-means model size. 1, Both driver side memory usage and distributed objects size (like DataFrame, RDD, Graph, Summary) are counted. 2, Lazy vals are not counted, e.g., an auxiliary object used in prediction. 3, If there is no enough information to get an accurate size, try to estimate the upper-bound size, e.g. - Given a LogisticRegression estimator, assume the coefficients are dense, even though the actual fitted model might be sparse (by L1 penalty).
- Given a tree model, assume all underlying trees are complete binary trees, even
     though some branches might be pruned or truncated.
4, For some model such as tree model, estimating model size before training is hard,
   the estimateModelSizemethod is not supported.
 - Definition Classes
- FMClassifier → Estimator
 
-    def explainParam(param: Param[_]): StringExplains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
-    def explainParams(): StringExplains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
-   final  def extractParamMap(): ParamMapextractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
-   final  def extractParamMap(extra: ParamMap): ParamMapExtracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
-   final  val factorSize: IntParamParam for dimensionality of the factors (>= 0) Param for dimensionality of the factors (>= 0) - Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-   final  val featuresCol: Param[String]Param for features column name. Param for features column name. - Definition Classes
- HasFeaturesCol
 
-    def fit(dataset: Dataset[_]): FMClassificationModelFits a model to the input data. 
-    def fit(dataset: Dataset[_], paramMaps: Seq[ParamMap]): Seq[FMClassificationModel]Fits multiple models to the input data with multiple sets of parameters. Fits multiple models to the input data with multiple sets of parameters. The default implementation uses a for loop on each parameter map. Subclasses could override this to optimize multi-model training. - dataset
- input dataset 
- paramMaps
- An array of parameter maps. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted models, matching the input parameter maps 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
 
-    def fit(dataset: Dataset[_], paramMap: ParamMap): FMClassificationModelFits a single model to the input data with provided parameter map. Fits a single model to the input data with provided parameter map. - dataset
- input dataset 
- paramMap
- Parameter map. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0")
 
-    def fit(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): FMClassificationModelFits a single model to the input data with optional parameters. Fits a single model to the input data with optional parameters. - dataset
- input dataset 
- firstParamPair
- the first param pair, overrides embedded params 
- otherParamPairs
- other param pairs. These values override any specified in this Estimator's embedded ParamMap. 
- returns
- fitted model 
 - Definition Classes
- Estimator
- Annotations
- @Since("2.0.0") @varargs()
 
-   final  val fitIntercept: BooleanParamParam for whether to fit an intercept term. Param for whether to fit an intercept term. - Definition Classes
- HasFitIntercept
 
-   final  val fitLinear: BooleanParamParam for whether to fit linear term (aka 1-way term) Param for whether to fit linear term (aka 1-way term) - Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-   final  def get[T](param: Param[T]): Option[T]Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def getDefault[T](param: Param[T]): Option[T]Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
-   final  def getFactorSize: Int- Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-   final  def getFeaturesCol: String- Definition Classes
- HasFeaturesCol
 
-   final  def getFitIntercept: Boolean- Definition Classes
- HasFitIntercept
 
-   final  def getFitLinear: Boolean- Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-   final  def getInitStd: Double- Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-   final  def getLabelCol: String- Definition Classes
- HasLabelCol
 
-   final  def getMaxIter: Int- Definition Classes
- HasMaxIter
 
-   final  def getMiniBatchFraction: Double- Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-    def getNumClasses(dataset: Dataset[_], maxNumClasses: Int = 100): IntGet the number of classes. Get the number of classes. This looks in column metadata first, and if that is missing, then this assumes classes are indexed 0,1,...,numClasses-1 and computes numClasses by finding the maximum label value. Label validation (ensuring all labels are integers >= 0) needs to be handled elsewhere, such as in extractLabeledPoints().- dataset
- Dataset which contains a column labelCol 
- maxNumClasses
- Maximum number of classes allowed when inferred from data. If numClasses is specified in the metadata, then maxNumClasses is ignored. 
- returns
- number of classes 
 - Attributes
- protected
- Definition Classes
- Classifier
- Exceptions thrown
- IllegalArgumentExceptionif metadata does not specify numClasses, and the actual numClasses exceeds maxNumClasses
 
-   final  def getOrDefault[T](param: Param[T]): TGets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
-    def getParam(paramName: String): Param[Any]Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
-   final  def getPredictionCol: String- Definition Classes
- HasPredictionCol
 
-   final  def getProbabilityCol: String- Definition Classes
- HasProbabilityCol
 
-   final  def getRawPredictionCol: String- Definition Classes
- HasRawPredictionCol
 
-   final  def getRegParam: Double- Definition Classes
- HasRegParam
 
-   final  def getSeed: Long- Definition Classes
- HasSeed
 
-   final  def getSolver: String- Definition Classes
- HasSolver
 
-   final  def getStepSize: Double- Definition Classes
- HasStepSize
 
-    def getThresholds: Array[Double]- Definition Classes
- HasThresholds
 
-   final  def getTol: Double- Definition Classes
- HasTol
 
-   final  def getWeightCol: String- Definition Classes
- HasWeightCol
 
-   final  def hasDefault[T](param: Param[T]): BooleanTests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
-    def hasParam(paramName: String): BooleanTests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  val initStd: DoubleParamParam for standard deviation of initial coefficients Param for standard deviation of initial coefficients - Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isDefined(param: Param[_]): BooleanChecks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def isSet(param: Param[_]): BooleanChecks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val labelCol: Param[String]Param for label column name. Param for label column name. - Definition Classes
- HasLabelCol
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val maxIter: IntParamParam for maximum number of iterations (>= 0). Param for maximum number of iterations (>= 0). - Definition Classes
- HasMaxIter
 
-   final  val miniBatchFraction: DoubleParamParam for mini-batch fraction, must be in range (0, 1] Param for mini-batch fraction, must be in range (0, 1] - Definition Classes
- FactorizationMachinesParams
- Annotations
- @Since("3.0.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    lazy val params: Array[Param[_]]Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
-   final  val predictionCol: Param[String]Param for prediction column name. Param for prediction column name. - Definition Classes
- HasPredictionCol
 
-   final  val probabilityCol: Param[String]Param for Column name for predicted class conditional probabilities. Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities. - Definition Classes
- HasProbabilityCol
 
-   final  val rawPredictionCol: Param[String]Param for raw prediction (a.k.a. Param for raw prediction (a.k.a. confidence) column name. - Definition Classes
- HasRawPredictionCol
 
-   final  val regParam: DoubleParamParam for regularization parameter (>= 0). Param for regularization parameter (>= 0). - Definition Classes
- HasRegParam
 
-    def save(path: String): UnitSaves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
 
-   final  val seed: LongParamParam for random seed. Param for random seed. - Definition Classes
- HasSeed
 
-   final  def set(paramPair: ParamPair[_]): FMClassifier.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set(param: String, value: Any): FMClassifier.this.typeSets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set[T](param: Param[T], value: T): FMClassifier.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
-   final  def setDefault(paramPairs: ParamPair[_]*): FMClassifier.this.typeSets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def setDefault[T](param: Param[T], value: T): FMClassifier.this.typeSets a default value for a param. 
-    def setFactorSize(value: Int): FMClassifier.this.typeSet the dimensionality of the factors. Set the dimensionality of the factors. Default is 8. - Annotations
- @Since("3.0.0")
 
-    def setFeaturesCol(value: String): FMClassifier- Definition Classes
- Predictor
 
-    def setFitIntercept(value: Boolean): FMClassifier.this.typeSet whether to fit intercept term. Set whether to fit intercept term. Default is true. - Annotations
- @Since("3.0.0")
 
-    def setFitLinear(value: Boolean): FMClassifier.this.typeSet whether to fit linear term. Set whether to fit linear term. Default is true. - Annotations
- @Since("3.0.0")
 
-    def setInitStd(value: Double): FMClassifier.this.typeSet the standard deviation of initial coefficients. Set the standard deviation of initial coefficients. Default is 0.01. - Annotations
- @Since("3.0.0")
 
-    def setLabelCol(value: String): FMClassifier- Definition Classes
- Predictor
 
-    def setMaxIter(value: Int): FMClassifier.this.typeSet the maximum number of iterations. Set the maximum number of iterations. Default is 100. - Annotations
- @Since("3.0.0")
 
-    def setMiniBatchFraction(value: Double): FMClassifier.this.typeSet the mini-batch fraction parameter. Set the mini-batch fraction parameter. Default is 1.0. - Annotations
- @Since("3.0.0")
 
-    def setPredictionCol(value: String): FMClassifier- Definition Classes
- Predictor
 
-    def setProbabilityCol(value: String): FMClassifier- Definition Classes
- ProbabilisticClassifier
 
-    def setRawPredictionCol(value: String): FMClassifier- Definition Classes
- Classifier
 
-    def setRegParam(value: Double): FMClassifier.this.typeSet the L2 regularization parameter. Set the L2 regularization parameter. Default is 0.0. - Annotations
- @Since("3.0.0")
 
-    def setSeed(value: Long): FMClassifier.this.typeSet the random seed for weight initialization. Set the random seed for weight initialization. - Annotations
- @Since("3.0.0")
 
-    def setSolver(value: String): FMClassifier.this.typeSet the solver algorithm used for optimization. Set the solver algorithm used for optimization. Supported options: "gd", "adamW". Default: "adamW" - Annotations
- @Since("3.0.0")
 
-    def setStepSize(value: Double): FMClassifier.this.typeSet the initial step size for the first step (like learning rate). Set the initial step size for the first step (like learning rate). Default is 1.0. - Annotations
- @Since("3.0.0")
 
-    def setThresholds(value: Array[Double]): FMClassifier- Definition Classes
- ProbabilisticClassifier
 
-    def setTol(value: Double): FMClassifier.this.typeSet the convergence tolerance of iterations. Set the convergence tolerance of iterations. Default is 1E-6. - Annotations
- @Since("3.0.0")
 
-   final  val solver: Param[String]The solver algorithm for optimization. The solver algorithm for optimization. Supported options: "gd", "adamW". Default: "adamW" - Definition Classes
- FactorizationMachinesParams → HasSolver
- Annotations
- @Since("3.0.0")
 
-    val stepSize: DoubleParamParam for Step size to be used for each iteration of optimization (> 0). Param for Step size to be used for each iteration of optimization (> 0). - Definition Classes
- HasStepSize
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    val thresholds: DoubleArrayParamParam for Thresholds in multi-class classification to adjust the probability of predicting each class. Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold. - Definition Classes
- HasThresholds
 
-    def toString(): String- Definition Classes
- Identifiable → AnyRef → Any
 
-   final  val tol: DoubleParamParam for the convergence tolerance for iterative algorithms (>= 0). Param for the convergence tolerance for iterative algorithms (>= 0). - Definition Classes
- HasTol
 
-    def train(dataset: Dataset[_]): FMClassificationModelTrain a model using the given dataset and parameters. Train a model using the given dataset and parameters. Developers can implement this instead of fit()to avoid dealing with schema validation and copying parameters into the model.- dataset
- Training dataset 
- returns
- Fitted model 
 - Attributes
- protected
- Definition Classes
- FMClassifier → Predictor
 
-    def transformSchema(schema: StructType): StructTypeCheck transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- Predictor → PipelineStage
 
-    def transformSchema(schema: StructType, logging: Boolean): StructType:: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
-    val uid: StringAn immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- FMClassifier → Identifiable
- Annotations
- @Since("3.0.0")
 
-    def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructTypeValidates and transforms the input schema with the provided param map. Validates and transforms the input schema with the provided param map. - schema
- input schema 
- fitting
- whether this is in fitting 
- featuresDataType
- SQL DataType for FeaturesType. E.g., - VectorUDTfor vector features.
- returns
- output schema 
 - Attributes
- protected
- Definition Classes
- ProbabilisticClassifierParams → ClassifierParams → PredictorParams
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  val weightCol: Param[String]Param for weight column name. Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0. - Definition Classes
- HasWeightCol
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def write: MLWriterReturns an MLWriterinstance for this ML instance.Returns an MLWriterinstance for this ML instance.- Definition Classes
- DefaultParamsWritable → MLWritable
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9) 
 
Inherited from DefaultParamsWritable
Inherited from MLWritable
Inherited from FMClassifierParams
Inherited from FactorizationMachines
Inherited from FactorizationMachinesParams
Inherited from HasWeightCol
Inherited from HasRegParam
Inherited from HasFitIntercept
Inherited from HasSeed
Inherited from HasSolver
Inherited from HasTol
Inherited from HasStepSize
Inherited from HasMaxIter
Inherited from ProbabilisticClassifier[Vector, FMClassifier, FMClassificationModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from Classifier[Vector, FMClassifier, FMClassificationModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from Predictor[Vector, FMClassifier, FMClassificationModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Estimator[FMClassificationModel]
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.