class LogisticRegressionModel extends ProbabilisticClassificationModel[Vector, LogisticRegressionModel] with MLWritable with LogisticRegressionParams with HasTrainingSummary[LogisticRegressionTrainingSummary]
Model produced by LogisticRegression.
- Annotations
- @Since("1.4.0")
- Source
- LogisticRegression.scala
- Grouped
- Alphabetic
- By Inheritance
- LogisticRegressionModel
- HasTrainingSummary
- LogisticRegressionParams
- HasMaxBlockSizeInMB
- HasAggregationDepth
- HasThreshold
- HasWeightCol
- HasStandardization
- HasTol
- HasFitIntercept
- HasMaxIter
- HasElasticNetParam
- HasRegParam
- MLWritable
- ProbabilisticClassificationModel
- ProbabilisticClassifierParams
- HasThresholds
- HasProbabilityCol
- ClassificationModel
- ClassifierParams
- HasRawPredictionCol
- PredictionModel
- PredictorParams
- HasPredictionCol
- HasFeaturesCol
- HasLabelCol
- Model
- Transformer
- PipelineStage
- Logging
- Params
- Serializable
- Identifiable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def $[T](param: Param[T]): TAn alias for getOrDefault().An alias for getOrDefault().- Attributes
- protected
- Definition Classes
- Params
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val aggregationDepth: IntParamParam for suggested depth for treeAggregate (>= 2). Param for suggested depth for treeAggregate (>= 2). - Definition Classes
- HasAggregationDepth
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def binarySummary: BinaryLogisticRegressionTrainingSummaryGets summary of model on training set. Gets summary of model on training set. An exception is thrown if hasSummaryis false or it is a multiclass model.- Annotations
- @Since("2.3.0")
 
-    def checkThresholdConsistency(): UnitIf thresholdandthresholdsare both set, ensures they are consistent.If thresholdandthresholdsare both set, ensures they are consistent.- Attributes
- protected
- Definition Classes
- LogisticRegressionParams
- Exceptions thrown
- IllegalArgumentExceptionif- thresholdand- thresholdsare not equivalent
 
-   final  def clear(param: Param[_]): LogisticRegressionModel.this.typeClears the user-supplied value for the input param. Clears the user-supplied value for the input param. - Definition Classes
- Params
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    val coefficientMatrix: Matrix- Annotations
- @Since("2.1.0")
 
-    def coefficients: VectorA vector of model coefficients for "binomial" logistic regression. A vector of model coefficients for "binomial" logistic regression. If this model was trained using the "multinomial" family then an exception is thrown. - returns
- Vector 
 - Annotations
- @Since("2.0.0")
 
-    def copy(extra: ParamMap): LogisticRegressionModelCreates a copy of this instance with the same UID and some extra params. Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().- Definition Classes
- LogisticRegressionModel → Model → Transformer → PipelineStage → Params
- Annotations
- @Since("1.4.0")
 
-    def copyValues[T <: Params](to: T, extra: ParamMap = ParamMap.empty): TCopies param values from this instance to another instance for params shared by them. Copies param values from this instance to another instance for params shared by them. This handles default Params and explicitly set Params separately. Default Params are copied from and to defaultParamMap, and explicitly set Params are copied from and toparamMap. Warning: This implicitly assumes that this Params instance and the target instance share the same set of default Params.- to
- the target instance, which should work with the same set of default Params as this source instance 
- extra
- extra params to be copied to the target's - paramMap
- returns
- the target instance with param values copied 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def defaultCopy[T <: Params](extra: ParamMap): TDefault implementation of copy with extra params. Default implementation of copy with extra params. It tries to create a new instance with the same UID. Then it copies the embedded and extra parameters over and returns the new instance. - Attributes
- protected
- Definition Classes
- Params
 
-   final  val elasticNetParam: DoubleParamParam for the ElasticNet mixing parameter, in range [0, 1]. Param for the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty. - Definition Classes
- HasElasticNetParam
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-    def evaluate(dataset: Dataset[_]): LogisticRegressionSummaryEvaluates the model on a test dataset. Evaluates the model on a test dataset. - dataset
- Test dataset to evaluate model on. 
 - Annotations
- @Since("2.0.0")
 
-    def explainParam(param: Param[_]): StringExplains a param. Explains a param. - param
- input param, must belong to this instance. 
- returns
- a string that contains the input param name, doc, and optionally its default value and the user-supplied value 
 - Definition Classes
- Params
 
-    def explainParams(): StringExplains all params of this instance. Explains all params of this instance. See explainParam().- Definition Classes
- Params
 
-   final  def extractParamMap(): ParamMapextractParamMapwith no extra values.extractParamMapwith no extra values.- Definition Classes
- Params
 
-   final  def extractParamMap(extra: ParamMap): ParamMapExtracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra. - Definition Classes
- Params
 
-   final  val family: Param[String]Param for the name of family which is a description of the label distribution to be used in the model. Param for the name of family which is a description of the label distribution to be used in the model. Supported options: - "auto": Automatically select the family based on the number of classes: If numClasses == 1 || numClasses == 2, set to "binomial". Else, set to "multinomial"
- "binomial": Binary logistic regression with pivoting.
- "multinomial": Multinomial logistic (softmax) regression without pivoting. Default is "auto".
 - Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.1.0")
 
-   final  val featuresCol: Param[String]Param for features column name. Param for features column name. - Definition Classes
- HasFeaturesCol
 
-    def featuresDataType: DataTypeReturns the SQL DataType corresponding to the FeaturesType type parameter. Returns the SQL DataType corresponding to the FeaturesType type parameter. This is used by validateAndTransformSchema(). This workaround is needed since SQL has different APIs for Scala and Java.The default value is VectorUDT, but it may be overridden if FeaturesType is not Vector. - Attributes
- protected
- Definition Classes
- PredictionModel
 
-   final  val fitIntercept: BooleanParamParam for whether to fit an intercept term. Param for whether to fit an intercept term. - Definition Classes
- HasFitIntercept
 
-   final  def get[T](param: Param[T]): Option[T]Optionally returns the user-supplied value of a param. Optionally returns the user-supplied value of a param. - Definition Classes
- Params
 
-   final  def getAggregationDepth: Int- Definition Classes
- HasAggregationDepth
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def getDefault[T](param: Param[T]): Option[T]Gets the default value of a parameter. Gets the default value of a parameter. - Definition Classes
- Params
 
-   final  def getElasticNetParam: Double- Definition Classes
- HasElasticNetParam
 
-    def getFamily: String- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.1.0")
 
-   final  def getFeaturesCol: String- Definition Classes
- HasFeaturesCol
 
-   final  def getFitIntercept: Boolean- Definition Classes
- HasFitIntercept
 
-   final  def getLabelCol: String- Definition Classes
- HasLabelCol
 
-    def getLowerBoundsOnCoefficients: Matrix- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-    def getLowerBoundsOnIntercepts: Vector- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-   final  def getMaxBlockSizeInMB: Double- Definition Classes
- HasMaxBlockSizeInMB
 
-   final  def getMaxIter: Int- Definition Classes
- HasMaxIter
 
-   final  def getOrDefault[T](param: Param[T]): TGets the value of a param in the embedded param map or its default value. Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set. - Definition Classes
- Params
 
-    def getParam(paramName: String): Param[Any]Gets a param by its name. Gets a param by its name. - Definition Classes
- Params
 
-   final  def getPredictionCol: String- Definition Classes
- HasPredictionCol
 
-   final  def getProbabilityCol: String- Definition Classes
- HasProbabilityCol
 
-   final  def getRawPredictionCol: String- Definition Classes
- HasRawPredictionCol
 
-   final  def getRegParam: Double- Definition Classes
- HasRegParam
 
-   final  def getStandardization: Boolean- Definition Classes
- HasStandardization
 
-    def getThreshold: DoubleGet threshold for binary classification. Get threshold for binary classification. If thresholdsis set with length 2 (i.e., binary classification), this returns the equivalent threshold:1 / (1 + thresholds(0) / thresholds(1)) . Otherwise, returns thresholdif set, or its default value if unset.- Definition Classes
- LogisticRegressionModel → LogisticRegressionParams → HasThreshold
- Annotations
- @Since("1.5.0")
- Exceptions thrown
- IllegalArgumentExceptionif- thresholdsis set to an array of length other than 2.
 
-    def getThresholds: Array[Double]Get thresholds for binary or multiclass classification. Get thresholds for binary or multiclass classification. If thresholdsis set, return its value. Otherwise, ifthresholdis set, return the equivalent thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an exception.- Definition Classes
- LogisticRegressionModel → LogisticRegressionParams → HasThresholds
- Annotations
- @Since("1.5.0")
 
-   final  def getTol: Double- Definition Classes
- HasTol
 
-    def getUpperBoundsOnCoefficients: Matrix- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-    def getUpperBoundsOnIntercepts: Vector- Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-   final  def getWeightCol: String- Definition Classes
- HasWeightCol
 
-   final  def hasDefault[T](param: Param[T]): BooleanTests whether the input param has a default value set. Tests whether the input param has a default value set. - Definition Classes
- Params
 
-    def hasParam(paramName: String): BooleanTests whether this instance contains a param with a given name. Tests whether this instance contains a param with a given name. - Definition Classes
- Params
 
-    def hasParent: BooleanIndicates whether this Model has a corresponding parent. 
-    def hasSummary: BooleanIndicates whether a training summary exists for this model instance. Indicates whether a training summary exists for this model instance. - Definition Classes
- HasTrainingSummary
- Annotations
- @Since("3.0.0")
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def intercept: DoubleThe model intercept for "binomial" logistic regression. The model intercept for "binomial" logistic regression. If this model was fit with the "multinomial" family then an exception is thrown. - returns
- Double 
 - Annotations
- @Since("1.3.0")
 
-    val interceptVector: Vector- Annotations
- @Since("2.1.0")
 
-   final  def isDefined(param: Param[_]): BooleanChecks whether a param is explicitly set or has a default value. Checks whether a param is explicitly set or has a default value. - Definition Classes
- Params
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def isSet(param: Param[_]): BooleanChecks whether a param is explicitly set. Checks whether a param is explicitly set. - Definition Classes
- Params
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-   final  val labelCol: Param[String]Param for label column name. Param for label column name. - Definition Classes
- HasLabelCol
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    val lowerBoundsOnCoefficients: Param[Matrix]The lower bounds on coefficients if fitting under bound constrained optimization. The lower bounds on coefficients if fitting under bound constrained optimization. The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression. Otherwise, it throws exception. Default is none. - Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-    val lowerBoundsOnIntercepts: Param[Vector]The lower bounds on intercepts if fitting under bound constrained optimization. The lower bounds on intercepts if fitting under bound constrained optimization. The bounds vector size must be equal to 1 for binomial regression, or the number of classes for multinomial regression. Otherwise, it throws exception. Default is none. - Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-   final  val maxBlockSizeInMB: DoubleParamParam for Maximum memory in MB for stacking input data into blocks. Param for Maximum memory in MB for stacking input data into blocks. Data is stacked within partitions. If more than remaining data size in a partition then it is adjusted to the data size. Default 0.0 represents choosing optimal value, depends on specific algorithm. Must be >= 0.. - Definition Classes
- HasMaxBlockSizeInMB
 
-   final  val maxIter: IntParamParam for maximum number of iterations (>= 0). Param for maximum number of iterations (>= 0). - Definition Classes
- HasMaxIter
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    val numClasses: IntNumber of classes (values which the label can take). Number of classes (values which the label can take). - Definition Classes
- LogisticRegressionModel → ClassificationModel
- Annotations
- @Since("1.3.0")
 
-    val numFeatures: IntReturns the number of features the model was trained on. Returns the number of features the model was trained on. If unknown, returns -1 - Definition Classes
- LogisticRegressionModel → PredictionModel
- Annotations
- @Since("1.6.0")
 
-    lazy val params: Array[Param[_]]Returns all params sorted by their names. Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param. - Definition Classes
- Params
- Note
- Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params. 
 
-    var parent: Estimator[LogisticRegressionModel]The parent estimator that produced this model. The parent estimator that produced this model. - Definition Classes
- Model
- Note
- For ensembles' component Models, this value can be null. 
 
-    def predict(features: Vector): DoublePredict label for the given feature vector. Predict label for the given feature vector. The behavior of this can be adjusted using thresholds.- Definition Classes
- LogisticRegressionModel → ClassificationModel → PredictionModel
 
-    def predictProbability(features: Vector): VectorPredict the probability of each class given the features. Predict the probability of each class given the features. These predictions are also called class conditional probabilities. This internal method is used to implement transform()and output probabilityCol.- returns
- Estimated class conditional probabilities 
 - Definition Classes
- ProbabilisticClassificationModel
- Annotations
- @Since("3.0.0")
 
-    def predictRaw(features: Vector): VectorRaw prediction for each possible label. Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implement transform()and output rawPredictionCol.- returns
- vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label. 
 - Definition Classes
- LogisticRegressionModel → ClassificationModel
- Annotations
- @Since("3.0.0")
 
-   final  val predictionCol: Param[String]Param for prediction column name. Param for prediction column name. - Definition Classes
- HasPredictionCol
 
-    def probability2prediction(probability: Vector): DoubleGiven a vector of class conditional probabilities, select the predicted label. Given a vector of class conditional probabilities, select the predicted label. This supports thresholds which favor particular labels. - returns
- predicted label 
 - Attributes
- protected
- Definition Classes
- LogisticRegressionModel → ProbabilisticClassificationModel
 
-   final  val probabilityCol: Param[String]Param for Column name for predicted class conditional probabilities. Param for Column name for predicted class conditional probabilities. Note: Not all models output well-calibrated probability estimates! These probabilities should be treated as confidences, not precise probabilities. - Definition Classes
- HasProbabilityCol
 
-    def raw2prediction(rawPrediction: Vector): DoubleGiven a vector of raw predictions, select the predicted label. Given a vector of raw predictions, select the predicted label. This may be overridden to support thresholds which favor particular labels. - returns
- predicted label 
 - Attributes
- protected
- Definition Classes
- LogisticRegressionModel → ProbabilisticClassificationModel → ClassificationModel
 
-    def raw2probability(rawPrediction: Vector): VectorNon-in-place version of raw2probabilityInPlace()Non-in-place version of raw2probabilityInPlace()- Attributes
- protected
- Definition Classes
- ProbabilisticClassificationModel
 
-    def raw2probabilityInPlace(rawPrediction: Vector): VectorEstimate the probability of each class given the raw prediction, doing the computation in-place. Estimate the probability of each class given the raw prediction, doing the computation in-place. These predictions are also called class conditional probabilities. This internal method is used to implement transform()and output probabilityCol.- returns
- Estimated class conditional probabilities (modified input vector) 
 - Attributes
- protected
- Definition Classes
- LogisticRegressionModel → ProbabilisticClassificationModel
 
-   final  val rawPredictionCol: Param[String]Param for raw prediction (a.k.a. Param for raw prediction (a.k.a. confidence) column name. - Definition Classes
- HasRawPredictionCol
 
-   final  val regParam: DoubleParamParam for regularization parameter (>= 0). Param for regularization parameter (>= 0). - Definition Classes
- HasRegParam
 
-    def save(path: String): UnitSaves this ML instance to the input path, a shortcut of write.save(path).Saves this ML instance to the input path, a shortcut of write.save(path).- Definition Classes
- MLWritable
- Annotations
- @Since("1.6.0") @throws("If the input path already exists but overwrite is not enabled.")
 
-   final  def set(paramPair: ParamPair[_]): LogisticRegressionModel.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set(param: String, value: Any): LogisticRegressionModel.this.typeSets a parameter (by name) in the embedded param map. Sets a parameter (by name) in the embedded param map. - Attributes
- protected
- Definition Classes
- Params
 
-   final  def set[T](param: Param[T], value: T): LogisticRegressionModel.this.typeSets a parameter in the embedded param map. Sets a parameter in the embedded param map. - Definition Classes
- Params
 
-   final  def setDefault(paramPairs: ParamPair[_]*): LogisticRegressionModel.this.typeSets default values for a list of params. Sets default values for a list of params. Note: Java developers should use the single-parameter setDefault. Annotating this with varargs can cause compilation failures due to a Scala compiler bug. See SPARK-9268.- paramPairs
- a list of param pairs that specify params and their default values to set respectively. Make sure that the params are initialized before this method gets called. 
 - Attributes
- protected
- Definition Classes
- Params
 
-   final  def setDefault[T](param: Param[T], value: T): LogisticRegressionModel.this.typeSets a default value for a param. 
-    def setFeaturesCol(value: String): LogisticRegressionModel- Definition Classes
- PredictionModel
 
-    def setParent(parent: Estimator[LogisticRegressionModel]): LogisticRegressionModelSets the parent of this model (Java API). Sets the parent of this model (Java API). - Definition Classes
- Model
 
-    def setPredictionCol(value: String): LogisticRegressionModel- Definition Classes
- PredictionModel
 
-    def setProbabilityCol(value: String): LogisticRegressionModel- Definition Classes
- ProbabilisticClassificationModel
 
-    def setRawPredictionCol(value: String): LogisticRegressionModel- Definition Classes
- ClassificationModel
 
-    def setThreshold(value: Double): LogisticRegressionModel.this.typeSet threshold in binary classification, in range [0, 1]. Set threshold in binary classification, in range [0, 1]. If the estimated probability of class label 1 is greater than threshold, then predict 1, else 0. A high threshold encourages the model to predict 0 more often; a low threshold encourages the model to predict 1 more often. Note: Calling this with threshold p is equivalent to calling setThresholds(Array(1-p, p)). WhensetThreshold()is called, any user-set value forthresholdswill be cleared. If boththresholdandthresholdsare set in a ParamMap, then they must be equivalent.Default is 0.5. - Definition Classes
- LogisticRegressionModel → LogisticRegressionParams
- Annotations
- @Since("1.5.0")
 
-    def setThresholds(value: Array[Double]): LogisticRegressionModel.this.typeSet thresholds in multiclass (or binary) classification to adjust the probability of predicting each class. Set thresholds in multiclass (or binary) classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values greater than 0, excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold. Note: When setThresholds()is called, any user-set value forthresholdwill be cleared. If boththresholdandthresholdsare set in a ParamMap, then they must be equivalent.- Definition Classes
- LogisticRegressionModel → LogisticRegressionParams → ProbabilisticClassificationModel
- Annotations
- @Since("1.5.0")
 
-   final  val standardization: BooleanParamParam for whether to standardize the training features before fitting the model. Param for whether to standardize the training features before fitting the model. - Definition Classes
- HasStandardization
 
-    def summary: LogisticRegressionTrainingSummaryGets summary of model on training set. Gets summary of model on training set. An exception is thrown if hasSummaryis false.- Definition Classes
- LogisticRegressionModel → HasTrainingSummary
- Annotations
- @Since("1.5.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    val threshold: DoubleParamParam for threshold in binary classification prediction, in range [0, 1]. Param for threshold in binary classification prediction, in range [0, 1]. - Definition Classes
- HasThreshold
 
-    val thresholds: DoubleArrayParamParam for Thresholds in multi-class classification to adjust the probability of predicting each class. Param for Thresholds in multi-class classification to adjust the probability of predicting each class. Array must have length equal to the number of classes, with values > 0 excepting that at most one value may be 0. The class with largest value p/t is predicted, where p is the original probability of that class and t is the class's threshold. - Definition Classes
- HasThresholds
 
-    def toString(): String- Definition Classes
- LogisticRegressionModel → Identifiable → AnyRef → Any
 
-   final  val tol: DoubleParamParam for the convergence tolerance for iterative algorithms (>= 0). Param for the convergence tolerance for iterative algorithms (>= 0). - Definition Classes
- HasTol
 
-    def transform(dataset: Dataset[_]): DataFrameTransforms dataset by reading from featuresCol, and appending new columns as specified by parameters: Transforms dataset by reading from featuresCol, and appending new columns as specified by parameters: - predicted labels as predictionCol of type Double
- raw predictions (confidences) as rawPredictionCol of type Vector
- probability of each class as probabilityCol of type Vector.
 - dataset
- input dataset 
- returns
- transformed dataset 
 - Definition Classes
- ProbabilisticClassificationModel → ClassificationModel → PredictionModel → Transformer
 
- predicted labels as predictionCol of type 
-    def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrameTransforms the dataset with provided parameter map as additional parameters. Transforms the dataset with provided parameter map as additional parameters. - dataset
- input dataset 
- paramMap
- additional parameters, overwrite embedded params 
- returns
- transformed dataset 
 - Definition Classes
- Transformer
- Annotations
- @Since("2.0.0")
 
-    def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrameTransforms the dataset with optional parameters Transforms the dataset with optional parameters - dataset
- input dataset 
- firstParamPair
- the first param pair, overwrite embedded params 
- otherParamPairs
- other param pairs, overwrite embedded params 
- returns
- transformed dataset 
 - Definition Classes
- Transformer
- Annotations
- @Since("2.0.0") @varargs()
 
-   final  def transformImpl(dataset: Dataset[_]): DataFrame- Definition Classes
- ClassificationModel → PredictionModel
 
-    def transformSchema(schema: StructType): StructTypeCheck transform validity and derive the output schema from the input schema. Check transform validity and derive the output schema from the input schema. We check validity for interactions between parameters during transformSchemaand raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate().Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks. - Definition Classes
- ProbabilisticClassificationModel → ClassificationModel → PredictionModel → PipelineStage
 
-    def transformSchema(schema: StructType, logging: Boolean): StructType:: DeveloperApi :: :: DeveloperApi :: Derives the output schema from the input schema and parameters, optionally with logging. This should be optimistic. If it is unclear whether the schema will be valid, then it should be assumed valid until proven otherwise. - Attributes
- protected
- Definition Classes
- PipelineStage
- Annotations
- @DeveloperApi()
 
-    val uid: StringAn immutable unique ID for the object and its derivatives. An immutable unique ID for the object and its derivatives. - Definition Classes
- LogisticRegressionModel → Identifiable
- Annotations
- @Since("1.4.0")
 
-    val upperBoundsOnCoefficients: Param[Matrix]The upper bounds on coefficients if fitting under bound constrained optimization. The upper bounds on coefficients if fitting under bound constrained optimization. The bound matrix must be compatible with the shape (1, number of features) for binomial regression, or (number of classes, number of features) for multinomial regression. Otherwise, it throws exception. Default is none. - Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-    val upperBoundsOnIntercepts: Param[Vector]The upper bounds on intercepts if fitting under bound constrained optimization. The upper bounds on intercepts if fitting under bound constrained optimization. The bound vector size must be equal to 1 for binomial regression, or the number of classes for multinomial regression. Otherwise, it throws exception. Default is none. - Definition Classes
- LogisticRegressionParams
- Annotations
- @Since("2.2.0")
 
-    def usingBoundConstrainedOptimization: Boolean- Attributes
- protected
- Definition Classes
- LogisticRegressionParams
 
-    def validateAndTransformSchema(schema: StructType, fitting: Boolean, featuresDataType: DataType): StructTypeValidates and transforms the input schema with the provided param map. Validates and transforms the input schema with the provided param map. - schema
- input schema 
- fitting
- whether this is in fitting 
- featuresDataType
- SQL DataType for FeaturesType. E.g., - VectorUDTfor vector features.
- returns
- output schema 
 - Attributes
- protected
- Definition Classes
- LogisticRegressionParams → ProbabilisticClassifierParams → ClassifierParams → PredictorParams
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  val weightCol: Param[String]Param for weight column name. Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0. - Definition Classes
- HasWeightCol
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def write: MLWriterReturns a org.apache.spark.ml.util.MLWriter instance for this ML instance. Returns a org.apache.spark.ml.util.MLWriter instance for this ML instance. For LogisticRegressionModel, this does NOT currently save the training summary. An option to save summary may be added in the future. This also does not save the parent currently. - Definition Classes
- LogisticRegressionModel → MLWritable
- Annotations
- @Since("1.6.0")
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9) 
 
Inherited from HasTrainingSummary[LogisticRegressionTrainingSummary]
Inherited from LogisticRegressionParams
Inherited from HasMaxBlockSizeInMB
Inherited from HasAggregationDepth
Inherited from HasThreshold
Inherited from HasWeightCol
Inherited from HasStandardization
Inherited from HasTol
Inherited from HasFitIntercept
Inherited from HasMaxIter
Inherited from HasElasticNetParam
Inherited from HasRegParam
Inherited from MLWritable
Inherited from ProbabilisticClassificationModel[Vector, LogisticRegressionModel]
Inherited from ProbabilisticClassifierParams
Inherited from HasThresholds
Inherited from HasProbabilityCol
Inherited from ClassificationModel[Vector, LogisticRegressionModel]
Inherited from ClassifierParams
Inherited from HasRawPredictionCol
Inherited from PredictionModel[Vector, LogisticRegressionModel]
Inherited from PredictorParams
Inherited from HasPredictionCol
Inherited from HasFeaturesCol
Inherited from HasLabelCol
Inherited from Model[LogisticRegressionModel]
Inherited from Transformer
Inherited from PipelineStage
Inherited from Logging
Inherited from Params
Inherited from Serializable
Inherited from Identifiable
Inherited from AnyRef
Inherited from Any
Parameters
A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.
Members
Parameter setters
Parameter getters
(expert-only) Parameters
A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.