object ChiSquareTest
Chi-square hypothesis testing for categorical data.
See Wikipedia for more information on the Chi-squared test.
- Annotations
- @Since("2.2.0")
- Source
- ChiSquareTest.scala
- Alphabetic
- By Inheritance
- ChiSquareTest
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def test(dataset: DataFrame, featuresCol: String, labelCol: String, flatten: Boolean): DataFrame- dataset
- DataFrame of categorical labels and categorical features. Real-valued features will be treated as categorical for each distinct value. 
- featuresCol
- Name of features column in dataset, of type - Vector(- VectorUDT)
- labelCol
- Name of label column in dataset, of any numerical type 
- flatten
- If false, the returned DataFrame contains only a single Row, otherwise, one row per feature. 
 - Annotations
- @Since("3.1.0")
 
-    def test(dataset: DataFrame, featuresCol: String, labelCol: String): DataFrameConduct Pearson's independence test for every feature against the label. Conduct Pearson's independence test for every feature against the label. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the Chi-squared statistic is computed. All label and feature values must be categorical. The null hypothesis is that the occurrence of the outcomes is statistically independent. - dataset
- DataFrame of categorical labels and categorical features. Real-valued features will be treated as categorical for each distinct value. 
- featuresCol
- Name of features column in dataset, of type - Vector(- VectorUDT)
- labelCol
- Name of label column in dataset, of any numerical type 
- returns
- DataFrame containing the test result for every feature against the label. This DataFrame will contain a single Row with the following fields: - pValues: Vector
- degreesOfFreedom: Array[Int]
- statistics: VectorEach of these fields has one value per feature.
 
 - Annotations
- @Since("2.2.0")
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)