object KolmogorovSmirnovTest
Conduct the two-sided Kolmogorov Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution. For more information on KS Test:
- Annotations
- @Since("2.4.0")
- Source
- KolmogorovSmirnovTest.scala
- See also
- Alphabetic
- By Inheritance
- KolmogorovSmirnovTest
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def test(dataset: Dataset[_], sampleCol: String, distName: String, params: Double*): DataFrameConvenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Currently supports the normal distribution, taking as parameters the mean and standard deviation. - dataset
- A - Datasetor a- DataFramecontaining the sample of data to test
- sampleCol
- Name of sample column in dataset, of any numerical type 
- distName
- a - Stringname for a theoretical distribution, currently only support "norm".
- params
- Double*specifying the parameters to be used for the theoretical distribution. For "norm" distribution, the parameters includes mean and variance.
- returns
- DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields: - pValue: Double
- statistic: Double
 
 - Annotations
- @Since("2.4.0") @varargs()
 
-    def test(dataset: Dataset[_], sampleCol: String, cdf: Function[Double, Double]): DataFrameJava-friendly version of test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)Java-friendly version of test(dataset: DataFrame, sampleCol: String, cdf: Double => Double)- Annotations
- @Since("2.4.0")
 
-    def test(dataset: Dataset[_], sampleCol: String, cdf: (Double) => Double): DataFrameConduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution. Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution. - dataset
- A - Datasetor a- DataFramecontaining the sample of data to test
- sampleCol
- Name of sample column in dataset, of any numerical type 
- cdf
- a - Double => Doublefunction to calculate the theoretical CDF at a given value
- returns
- DataFrame containing the test result for the input sampled data. This DataFrame will contain a single Row with the following fields: - pValue: Double
- statistic: Double
 
 - Annotations
- @Since("2.4.0")
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)