class IsotonicRegressionModel extends Serializable with Saveable
Regression model for isotonic regression.
- Annotations
- @Since("1.3.0")
- Source
- IsotonicRegression.scala
- Alphabetic
- By Inheritance
- IsotonicRegressionModel
- Saveable
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-    new IsotonicRegressionModel(boundaries: Iterable[Double], predictions: Iterable[Double], isotonic: Boolean)A Java-friendly constructor that takes two Iterable parameters and one Boolean parameter. A Java-friendly constructor that takes two Iterable parameters and one Boolean parameter. - Annotations
- @Since("1.4.0")
 
-    new IsotonicRegressionModel(boundaries: Array[Double], predictions: Array[Double], isotonic: Boolean)- boundaries
- Array of boundaries for which predictions are known. Boundaries must be sorted in increasing order. 
- predictions
- Array of predictions associated to the boundaries at the same index. Results of isotonic regression and therefore monotone. 
- isotonic
- indicates whether this is isotonic or antitonic. 
 - Annotations
- @Since("1.3.0")
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    val boundaries: Array[Double]- Annotations
- @Since("1.3.0")
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    val isotonic: Boolean- Annotations
- @Since("1.3.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def predict(testData: Double): DoublePredict a single label. Predict a single label. Using a piecewise linear function. - testData
- Feature to be labeled. 
- returns
- Predicted label. 1) If testData exactly matches a boundary then associated prediction is returned. In case there are multiple predictions with the same boundary then one of them is returned. Which one is undefined (same as java.util.Arrays.binarySearch). 2) If testData is lower or higher than all boundaries then first or last prediction is returned respectively. In case there are multiple predictions with the same boundary then the lowest or highest is returned respectively. 3) If testData falls between two values in boundary array then prediction is treated as piecewise linear function and interpolated value is returned. In case there are multiple values with the same boundary then the same rules as in 2) are used. 
 - Annotations
- @Since("1.3.0")
 
-    def predict(testData: JavaDoubleRDD): JavaDoubleRDDPredict labels for provided features. Predict labels for provided features. Using a piecewise linear function. - testData
- Features to be labeled. 
- returns
- Predicted labels. 
 - Annotations
- @Since("1.3.0")
 
-    def predict(testData: RDD[Double]): RDD[Double]Predict labels for provided features. Predict labels for provided features. Using a piecewise linear function. - testData
- Features to be labeled. 
- returns
- Predicted labels. 
 - Annotations
- @Since("1.3.0")
 
-    val predictions: Array[Double]- Annotations
- @Since("1.3.0")
 
-    def save(sc: SparkContext, path: String): UnitSave this model to the given path. Save this model to the given path. This saves: - human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
 The model may be loaded using Loader.load.- sc
- Spark context used to save model data. 
- path
- Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception. 
 - Definition Classes
- IsotonicRegressionModel → Saveable
- Annotations
- @Since("1.4.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)