class RidgeRegressionModel extends GeneralizedLinearModel with RegressionModel with Serializable with Saveable with PMMLExportable
Regression model trained using RidgeRegression.
- Annotations
- @Since("0.8.0")
- Source
- RidgeRegression.scala
- Alphabetic
- By Inheritance
- RidgeRegressionModel
- PMMLExportable
- Saveable
- RegressionModel
- GeneralizedLinearModel
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    val intercept: Double- Definition Classes
- RidgeRegressionModel → GeneralizedLinearModel
- Annotations
- @Since("0.8.0")
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def predict(testData: JavaRDD[Vector]): JavaRDD[Double]Predict values for examples stored in a JavaRDD. Predict values for examples stored in a JavaRDD. - testData
- JavaRDD representing data points to be predicted 
- returns
- a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction 
 - Definition Classes
- RegressionModel
- Annotations
- @Since("1.0.0")
 
-    def predict(testData: Vector): DoublePredict values for a single data point using the model trained. Predict values for a single data point using the model trained. - testData
- array representing a single data point 
- returns
- Double prediction from the trained model 
 - Definition Classes
- GeneralizedLinearModel
- Annotations
- @Since("1.0.0")
 
-    def predict(testData: RDD[Vector]): RDD[Double]Predict values for the given data set using the model trained. Predict values for the given data set using the model trained. - testData
- RDD representing data points to be predicted 
- returns
- RDD[Double] where each entry contains the corresponding prediction 
 - Definition Classes
- GeneralizedLinearModel
- Annotations
- @Since("1.0.0")
 
-    def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double): DoublePredict the result given a data point and the weights learned. Predict the result given a data point and the weights learned. - dataMatrix
- Row vector containing the features for this data point 
- weightMatrix
- Column vector containing the weights of the model 
- intercept
- Intercept of the model. 
 - Attributes
- protected
- Definition Classes
- RidgeRegressionModel → GeneralizedLinearModel
 
-    def save(sc: SparkContext, path: String): UnitSave this model to the given path. Save this model to the given path. This saves: - human-readable (JSON) model metadata to path/metadata/
- Parquet formatted data to path/data/
 The model may be loaded using Loader.load.- sc
- Spark context used to save model data. 
- path
- Path specifying the directory in which to save this model. If the directory already exists, this method throws an exception. 
 - Definition Classes
- RidgeRegressionModel → Saveable
- Annotations
- @Since("1.3.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toPMML(): StringExport the model to a String in PMML format Export the model to a String in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(outputStream: OutputStream): UnitExport the model to the OutputStream in PMML format Export the model to the OutputStream in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(sc: SparkContext, path: String): UnitExport the model to a directory on a distributed file system in PMML format Export the model to a directory on a distributed file system in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toPMML(localPath: String): UnitExport the model to a local file in PMML format Export the model to a local file in PMML format - Definition Classes
- PMMLExportable
- Annotations
- @Since("1.4.0")
 
-    def toString(): StringPrint a summary of the model. Print a summary of the model. - Definition Classes
- GeneralizedLinearModel → AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    val weights: Vector- Definition Classes
- RidgeRegressionModel → GeneralizedLinearModel
- Annotations
- @Since("1.0.0")
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)