class MultivariateOnlineSummarizer extends MultivariateStatisticalSummary with Serializable
MultivariateOnlineSummarizer implements MultivariateStatisticalSummary to compute the mean, variance, minimum, maximum, counts, and nonzero counts for instances in sparse or dense vector format in an online fashion.
Two MultivariateOnlineSummarizer can be merged together to have a statistical summary of the corresponding joint dataset.
A numerically stable algorithm is implemented to compute the mean and variance of instances: Reference: variance-wiki Zero elements (including explicit zero values) are skipped when calling add(), to have time complexity O(nnz) instead of O(n) for each column.
For weighted instances, the unbiased estimation of variance is defined by the reliability weights: see Reliability weights (Wikipedia).
- Annotations
- @Since("1.1.0")
- Source
- MultivariateOnlineSummarizer.scala
- Alphabetic
- By Inheritance
- MultivariateOnlineSummarizer
- Serializable
- MultivariateStatisticalSummary
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Instance Constructors
-  new MultivariateOnlineSummarizer()
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def add(sample: Vector): MultivariateOnlineSummarizer.this.typeAdd a new sample to this summarizer, and update the statistical summary. Add a new sample to this summarizer, and update the statistical summary. - sample
- The sample in dense/sparse vector format to be added into this summarizer. 
- returns
- This MultivariateOnlineSummarizer object. 
 - Annotations
- @Since("1.1.0")
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def count: LongSample size. Sample size. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.1.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def max: VectorMaximum value of each dimension. Maximum value of each dimension. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.1.0")
 
-    def mean: VectorSample mean of each dimension. Sample mean of each dimension. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.1.0")
 
-    def merge(other: MultivariateOnlineSummarizer): MultivariateOnlineSummarizer.this.typeMerge another MultivariateOnlineSummarizer, and update the statistical summary. Merge another MultivariateOnlineSummarizer, and update the statistical summary. (Note that it's in place merging; as a result, thisobject will be modified.)- other
- The other MultivariateOnlineSummarizer to be merged. 
- returns
- This MultivariateOnlineSummarizer object. 
 - Annotations
- @Since("1.1.0")
 
-    def min: VectorMinimum value of each dimension. Minimum value of each dimension. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.1.0")
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def normL1: VectorL1 norm of each dimension. L1 norm of each dimension. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.2.0")
 
-    def normL2: VectorL2 (Euclidean) norm of each dimension. L2 (Euclidean) norm of each dimension. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.2.0")
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-    def numNonzeros: VectorNumber of nonzero elements in each dimension. Number of nonzero elements in each dimension. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.1.0")
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def variance: VectorUnbiased estimate of sample variance of each dimension. Unbiased estimate of sample variance of each dimension. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
- Annotations
- @Since("1.1.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def weightSum: DoubleSum of weights. Sum of weights. - Definition Classes
- MultivariateOnlineSummarizer → MultivariateStatisticalSummary
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)