object Statistics
API for statistical functions in MLlib.
- Annotations
- @Since("1.1.0")
- Source
- Statistics.scala
- Alphabetic
- By Inheritance
- Statistics
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def chiSqTest(data: JavaRDD[LabeledPoint]): Array[ChiSqTestResult]Java-friendly version of chiSqTest()Java-friendly version of chiSqTest()- Annotations
- @Since("1.5.0")
 
-    def chiSqTest(data: RDD[LabeledPoint]): Array[ChiSqTestResult]Conduct Pearson's independence test for every feature against the label across the input RDD. Conduct Pearson's independence test for every feature against the label across the input RDD. For each feature, the (feature, label) pairs are converted into a contingency matrix for which the chi-squared statistic is computed. All label and feature values must be categorical. - data
- an - RDD[LabeledPoint]containing the labeled dataset with categorical features. Real-valued features will be treated as categorical for each distinct value.
- returns
- an array containing the ChiSquaredTestResult for every feature against the label. The order of the elements in the returned array reflects the order of input features. 
 - Annotations
- @Since("1.1.0")
 
-    def chiSqTest(observed: Matrix): ChiSqTestResultConduct Pearson's independence test on the input contingency matrix, which cannot contain negative entries or columns or rows that sum up to 0. Conduct Pearson's independence test on the input contingency matrix, which cannot contain negative entries or columns or rows that sum up to 0. - observed
- The contingency matrix (containing either counts or relative frequencies). 
- returns
- ChiSquaredTest object containing the test statistic, degrees of freedom, p-value, the method used, and the null hypothesis. 
 - Annotations
- @Since("1.1.0")
 
-    def chiSqTest(observed: Vector): ChiSqTestResultConduct Pearson's chi-squared goodness of fit test of the observed data against the uniform distribution, with each category having an expected frequency of 1 / observed.size.Conduct Pearson's chi-squared goodness of fit test of the observed data against the uniform distribution, with each category having an expected frequency of 1 / observed.size.- observed
- Vector containing the observed categorical counts/relative frequencies. 
- returns
- ChiSquaredTest object containing the test statistic, degrees of freedom, p-value, the method used, and the null hypothesis. 
 - Annotations
- @Since("1.1.0")
- Note
- observedcannot contain negative values.
 
-    def chiSqTest(observed: Vector, expected: Vector): ChiSqTestResultConduct Pearson's chi-squared goodness of fit test of the observed data against the expected distribution. Conduct Pearson's chi-squared goodness of fit test of the observed data against the expected distribution. - observed
- Vector containing the observed categorical counts/relative frequencies. 
- expected
- Vector containing the expected categorical counts/relative frequencies. - expectedis rescaled if the- expectedsum differs from the- observedsum.
- returns
- ChiSquaredTest object containing the test statistic, degrees of freedom, p-value, the method used, and the null hypothesis. 
 - Annotations
- @Since("1.1.0")
- Note
- The two input Vectors need to have the same size. - observedcannot contain negative values.- expectedcannot contain nonpositive values.
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-    def colStats(X: RDD[Vector]): MultivariateStatisticalSummaryComputes column-wise summary statistics for the input RDD[Vector]. Computes column-wise summary statistics for the input RDD[Vector]. - X
- an RDD[Vector] for which column-wise summary statistics are to be computed. 
- returns
- MultivariateStatisticalSummary object containing column-wise summary statistics. 
 - Annotations
- @Since("1.1.0")
 
-    def corr(x: JavaRDD[Double], y: JavaRDD[Double], method: String): DoubleJava-friendly version of corr()Java-friendly version of corr()- Annotations
- @Since("1.4.1")
 
-    def corr(x: RDD[Double], y: RDD[Double], method: String): DoubleCompute the correlation for the input RDDs using the specified method. Compute the correlation for the input RDDs using the specified method. Methods currently supported: pearson(default),spearman.- x
- RDD[Double] of the same cardinality as y. 
- y
- RDD[Double] of the same cardinality as x. 
- method
- String specifying the method to use for computing correlation. Supported: - pearson(default),- spearman
- returns
- A Double containing the correlation between the two input RDD[Double]s using the specified method. 
 - Annotations
- @Since("1.1.0")
- Note
- The two input RDDs need to have the same number of partitions and the same number of elements in each partition. 
 
-    def corr(x: JavaRDD[Double], y: JavaRDD[Double]): DoubleJava-friendly version of corr()Java-friendly version of corr()- Annotations
- @Since("1.4.1")
 
-    def corr(x: RDD[Double], y: RDD[Double]): DoubleCompute the Pearson correlation for the input RDDs. Compute the Pearson correlation for the input RDDs. Returns NaN if either vector has 0 variance. - x
- RDD[Double] of the same cardinality as y. 
- y
- RDD[Double] of the same cardinality as x. 
- returns
- A Double containing the Pearson correlation between the two input RDD[Double]s 
 - Annotations
- @Since("1.1.0")
- Note
- The two input RDDs need to have the same number of partitions and the same number of elements in each partition. 
 
-    def corr(X: RDD[Vector], method: String): MatrixCompute the correlation matrix for the input RDD of Vectors using the specified method. Compute the correlation matrix for the input RDD of Vectors using the specified method. Methods currently supported: pearson(default),spearman.- X
- an RDD[Vector] for which the correlation matrix is to be computed. 
- method
- String specifying the method to use for computing correlation. Supported: - pearson(default),- spearman
- returns
- Correlation matrix comparing columns in X. 
 - Annotations
- @Since("1.1.0")
- Note
- For Spearman, a rank correlation, we need to create an RDD[Double] for each column and sort it in order to retrieve the ranks and then join the columns back into an RDD[Vector], which is fairly costly. Cache the input RDD before calling corr with - method = "spearman"to avoid recomputing the common lineage.
 
-    def corr(X: RDD[Vector]): MatrixCompute the Pearson correlation matrix for the input RDD of Vectors. Compute the Pearson correlation matrix for the input RDD of Vectors. Columns with 0 covariance produce NaN entries in the correlation matrix. - X
- an RDD[Vector] for which the correlation matrix is to be computed. 
- returns
- Pearson correlation matrix comparing columns in X. 
 - Annotations
- @Since("1.1.0")
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def kolmogorovSmirnovTest(data: JavaDoubleRDD, distName: String, params: Double*): KolmogorovSmirnovTestResultJava-friendly version of kolmogorovSmirnovTest()Java-friendly version of kolmogorovSmirnovTest()- Annotations
- @Since("1.5.0") @varargs()
 
-    def kolmogorovSmirnovTest(data: RDD[Double], distName: String, params: Double*): KolmogorovSmirnovTestResultConvenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Convenience function to conduct a one-sample, two-sided Kolmogorov-Smirnov test for probability distribution equality. Currently supports the normal distribution, taking as parameters the mean and standard deviation. (distName = "norm") - data
- an - RDD[Double]containing the sample of data to test
- distName
- a - Stringname for a theoretical distribution
- params
- Double*specifying the parameters to be used for the theoretical distribution
- returns
- org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult object containing test statistic, p-value, and null hypothesis. 
 - Annotations
- @Since("1.5.0") @varargs()
 
-    def kolmogorovSmirnovTest(data: RDD[Double], cdf: (Double) => Double): KolmogorovSmirnovTestResultConduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution. Conduct the two-sided Kolmogorov-Smirnov (KS) test for data sampled from a continuous distribution. By comparing the largest difference between the empirical cumulative distribution of the sample data and the theoretical distribution we can provide a test for the the null hypothesis that the sample data comes from that theoretical distribution. For more information on KS Test: - data
- an - RDD[Double]containing the sample of data to test
- cdf
- a - Double => Doublefunction to calculate the theoretical CDF at a given value
- returns
- org.apache.spark.mllib.stat.test.KolmogorovSmirnovTestResult object containing test statistic, p-value, and null hypothesis. 
 - Annotations
- @Since("1.5.0")
- See also
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)