object DecisionTree extends Serializable with Logging
- Annotations
- @Since("1.0.0")
- Source
- DecisionTree.scala
- Alphabetic
- By Inheritance
- DecisionTree
- Logging
- Serializable
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Type Members
-   implicit  class LogStringContext extends AnyRef- Definition Classes
- Logging
 
Value Members
-   final  def !=(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def ##: Int- Definition Classes
- AnyRef → Any
 
-   final  def ==(arg0: Any): Boolean- Definition Classes
- AnyRef → Any
 
-    def MDC(key: LogKey, value: Any): MDC- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def asInstanceOf[T0]: T0- Definition Classes
- Any
 
-    def clone(): AnyRef- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
-   final  def eq(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-    def equals(arg0: AnyRef): Boolean- Definition Classes
- AnyRef → Any
 
-   final  def getClass(): Class[_ <: AnyRef]- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def hashCode(): Int- Definition Classes
- AnyRef → Any
- Annotations
- @IntrinsicCandidate() @native()
 
-    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def initializeLogIfNecessary(isInterpreter: Boolean): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def isInstanceOf[T0]: Boolean- Definition Classes
- Any
 
-    def isTraceEnabled(): Boolean- Attributes
- protected
- Definition Classes
- Logging
 
-    def log: Logger- Attributes
- protected
- Definition Classes
- Logging
 
-    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logDebug(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logError(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logInfo(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logName: String- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logTrace(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry, throwable: Throwable): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(entry: LogEntry): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-    def logWarning(msg: => String): Unit- Attributes
- protected
- Definition Classes
- Logging
 
-   final  def ne(arg0: AnyRef): Boolean- Definition Classes
- AnyRef
 
-   final  def notify(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def notifyAll(): Unit- Definition Classes
- AnyRef
- Annotations
- @IntrinsicCandidate() @native()
 
-   final  def synchronized[T0](arg0: => T0): T0- Definition Classes
- AnyRef
 
-    def toString(): String- Definition Classes
- AnyRef → Any
 
-    def train(input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int, numClasses: Int, maxBins: Int, quantileCalculationStrategy: QuantileStrategy, categoricalFeaturesInfo: Map[Int, Int]): DecisionTreeModelMethod to train a decision tree model. Method to train a decision tree model. The method supports binary and multiclass classification and regression. - input
- Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers. 
- algo
- Type of decision tree, either classification or regression. 
- impurity
- Criterion used for information gain calculation. 
- maxDepth
- Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). 
- numClasses
- Number of classes for classification. Default value of 2. 
- maxBins
- Maximum number of bins used for splitting features. 
- quantileCalculationStrategy
- Algorithm for calculating quantiles. 
- categoricalFeaturesInfo
- Map storing arity of categorical features. An entry (n to k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}. 
- returns
- DecisionTreeModel that can be used for prediction. 
 - Annotations
- @Since("1.0.0")
- Note
- Using - org.apache.spark.mllib.tree.DecisionTree.trainClassifierand- org.apache.spark.mllib.tree.DecisionTree.trainRegressoris recommended to clearly separate classification and regression.
 
-    def train(input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int, numClasses: Int): DecisionTreeModelMethod to train a decision tree model. Method to train a decision tree model. The method supports binary and multiclass classification and regression. - input
- Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers. 
- algo
- Type of decision tree, either classification or regression. 
- impurity
- Criterion used for information gain calculation. 
- maxDepth
- Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). 
- numClasses
- Number of classes for classification. Default value of 2. 
- returns
- DecisionTreeModel that can be used for prediction. 
 - Annotations
- @Since("1.2.0")
- Note
- Using - org.apache.spark.mllib.tree.DecisionTree.trainClassifierand- org.apache.spark.mllib.tree.DecisionTree.trainRegressoris recommended to clearly separate classification and regression.
 
-    def train(input: RDD[LabeledPoint], algo: Algo, impurity: Impurity, maxDepth: Int): DecisionTreeModelMethod to train a decision tree model. Method to train a decision tree model. The method supports binary and multiclass classification and regression. - input
- Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers. 
- algo
- Type of decision tree, either classification or regression. 
- impurity
- Criterion used for information gain calculation. 
- maxDepth
- Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). 
- returns
- DecisionTreeModel that can be used for prediction. 
 - Annotations
- @Since("1.0.0")
- Note
- Using - org.apache.spark.mllib.tree.DecisionTree.trainClassifierand- org.apache.spark.mllib.tree.DecisionTree.trainRegressoris recommended to clearly separate classification and regression.
 
-    def train(input: RDD[LabeledPoint], strategy: Strategy): DecisionTreeModelMethod to train a decision tree model. Method to train a decision tree model. The method supports binary and multiclass classification and regression. - input
- Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. For classification, labels should take values {0, 1, ..., numClasses-1}. For regression, labels are real numbers. 
- strategy
- The configuration parameters for the tree algorithm which specify the type of decision tree (classification or regression), feature type (continuous, categorical), depth of the tree, quantile calculation strategy, etc. 
- returns
- DecisionTreeModel that can be used for prediction. 
 - Annotations
- @Since("1.0.0")
- Note
- Using - org.apache.spark.mllib.tree.DecisionTree.trainClassifierand- org.apache.spark.mllib.tree.DecisionTree.trainRegressoris recommended to clearly separate classification and regression.
 
-    def trainClassifier(input: JavaRDD[LabeledPoint], numClasses: Int, categoricalFeaturesInfo: Map[Integer, Integer], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModelJava-friendly API for org.apache.spark.mllib.tree.DecisionTree.trainClassifierJava-friendly API for org.apache.spark.mllib.tree.DecisionTree.trainClassifier- Annotations
- @Since("1.1.0")
 
-    def trainClassifier(input: RDD[LabeledPoint], numClasses: Int, categoricalFeaturesInfo: Map[Int, Int], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModelMethod to train a decision tree model for binary or multiclass classification. Method to train a decision tree model for binary or multiclass classification. - input
- Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels should take values {0, 1, ..., numClasses-1}. 
- numClasses
- Number of classes for classification. 
- categoricalFeaturesInfo
- Map storing arity of categorical features. An entry (n to k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}. 
- impurity
- Criterion used for information gain calculation. Supported values: "gini" (recommended) or "entropy". 
- maxDepth
- Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (suggested value: 5) 
- maxBins
- Maximum number of bins used for splitting features. (suggested value: 32) 
- returns
- DecisionTreeModel that can be used for prediction. 
 - Annotations
- @Since("1.1.0")
 
-    def trainRegressor(input: JavaRDD[LabeledPoint], categoricalFeaturesInfo: Map[Integer, Integer], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModelJava-friendly API for org.apache.spark.mllib.tree.DecisionTree.trainRegressorJava-friendly API for org.apache.spark.mllib.tree.DecisionTree.trainRegressor- Annotations
- @Since("1.1.0")
 
-    def trainRegressor(input: RDD[LabeledPoint], categoricalFeaturesInfo: Map[Int, Int], impurity: String, maxDepth: Int, maxBins: Int): DecisionTreeModelMethod to train a decision tree model for regression. Method to train a decision tree model for regression. - input
- Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels are real numbers. 
- categoricalFeaturesInfo
- Map storing arity of categorical features. An entry (n to k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}. 
- impurity
- Criterion used for information gain calculation. The only supported value for regression is "variance". 
- maxDepth
- Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (suggested value: 5) 
- maxBins
- Maximum number of bins used for splitting features. (suggested value: 32) 
- returns
- DecisionTreeModel that can be used for prediction. 
 - Annotations
- @Since("1.1.0")
 
-   final  def wait(arg0: Long, arg1: Int): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-   final  def wait(arg0: Long): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
 
-   final  def wait(): Unit- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
 
-    def withLogContext(context: Map[String, String])(body: => Unit): Unit- Attributes
- protected
- Definition Classes
- Logging
 
Deprecated Value Members
-    def finalize(): Unit- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated
- (Since version 9)