public class CrossValidatorModel extends Model<CrossValidatorModel> implements CrossValidatorParams, MLWritable
param: bestModel The best model selected from k-fold cross validation.
param: avgMetrics Average cross-validation metrics for each paramMap in
CrossValidator.estimatorParamMaps
, in the corresponding order.
Modifier and Type | Class and Description |
---|---|
static class |
CrossValidatorModel.CrossValidatorModelWriter
Writer for CrossValidatorModel.
|
Modifier and Type | Method and Description |
---|---|
double[] |
avgMetrics() |
Model<?> |
bestModel() |
CrossValidatorModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
Param<Estimator<?>> |
estimator()
param for the estimator to be validated
|
Param<ParamMap[]> |
estimatorParamMaps()
param for estimator param maps
|
Param<Evaluator> |
evaluator()
param for the evaluator used to select hyper-parameters that maximize the validated metric
|
Param<String> |
foldCol()
Param for the column name of user specified fold number.
|
boolean |
hasSubModels() |
static CrossValidatorModel |
load(String path) |
IntParam |
numFolds()
Param for number of folds for cross validation.
|
static MLReader<CrossValidatorModel> |
read() |
LongParam |
seed()
Param for random seed.
|
Model<?>[][] |
subModels() |
String |
toString() |
Dataset<Row> |
transform(Dataset<?> dataset)
Transforms the input dataset.
|
StructType |
transformSchema(StructType schema)
Check transform validity and derive the output schema from the input schema.
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
CrossValidatorModel.CrossValidatorModelWriter |
write()
Returns an
MLWriter instance for this ML instance. |
transform, transform, transform
params
getFoldCol, getNumFolds
getEstimator, getEstimatorParamMaps, getEvaluator, logTuningParams, transformSchemaImpl
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
save
$init$, initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, initLock, isTraceEnabled, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning, org$apache$spark$internal$Logging$$log__$eq, org$apache$spark$internal$Logging$$log_, uninitialize
public static MLReader<CrossValidatorModel> read()
public static CrossValidatorModel load(String path)
public IntParam numFolds()
CrossValidatorParams
numFolds
in interface CrossValidatorParams
public Param<String> foldCol()
CrossValidatorParams
CrossValidator
won't do random k-fold split. Note that this column should be
integer type with range [0, numFolds) and Spark will throw exception on out-of-range
fold numbers.foldCol
in interface CrossValidatorParams
public Param<Estimator<?>> estimator()
ValidatorParams
estimator
in interface ValidatorParams
public Param<ParamMap[]> estimatorParamMaps()
ValidatorParams
estimatorParamMaps
in interface ValidatorParams
public Param<Evaluator> evaluator()
ValidatorParams
evaluator
in interface ValidatorParams
public final LongParam seed()
HasSeed
public String uid()
Identifiable
uid
in interface Identifiable
public Model<?> bestModel()
public double[] avgMetrics()
public Model<?>[][] subModels()
IllegalArgumentException
- if subModels are not available. To retrieve subModels,
make sure to set collectSubModels to true before fitting.public boolean hasSubModels()
public Dataset<Row> transform(Dataset<?> dataset)
Transformer
transform
in class Transformer
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)public CrossValidatorModel copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Model<CrossValidatorModel>
extra
- (undocumented)public CrossValidatorModel.CrossValidatorModelWriter write()
MLWritable
MLWriter
instance for this ML instance.write
in interface MLWritable
public String toString()
toString
in interface Identifiable
toString
in class Object