Packages

t

org.apache.spark.mllib.classification

ClassificationModel

trait ClassificationModel extends Serializable

Represents a classification model that predicts to which of a set of categories an example belongs. The categories are represented by double values: 0.0, 1.0, 2.0, etc.

Annotations
@Since( "0.8.0" )
Source
ClassificationModel.scala
Linear Supertypes
Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. ClassificationModel
  2. Serializable
  3. Serializable
  4. AnyRef
  5. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Abstract Value Members

  1. abstract def predict(testData: Vector): Double

    Predict values for a single data point using the model trained.

    Predict values for a single data point using the model trained.

    testData

    array representing a single data point

    returns

    predicted category from the trained model

    Annotations
    @Since( "1.0.0" )
  2. abstract def predict(testData: RDD[Vector]): RDD[Double]

    Predict values for the given data set using the model trained.

    Predict values for the given data set using the model trained.

    testData

    RDD representing data points to be predicted

    returns

    an RDD[Double] where each entry contains the corresponding prediction

    Annotations
    @Since( "1.0.0" )

Concrete Value Members

  1. def predict(testData: JavaRDD[Vector]): JavaRDD[Double]

    Predict values for examples stored in a JavaRDD.

    Predict values for examples stored in a JavaRDD.

    testData

    JavaRDD representing data points to be predicted

    returns

    a JavaRDD[java.lang.Double] where each entry contains the corresponding prediction

    Annotations
    @Since( "1.0.0" )