Package org.apache.spark.ml
Class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>>
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Estimator<M>
org.apache.spark.ml.Predictor<FeaturesType,Learner,M>
- Type Parameters:
FeaturesType
- Type of features. E.g.,VectorUDT
for vector features.Learner
- Specialization of this class. If you subclass this type, use this type parameter to specify the concrete type.M
- Specialization ofPredictionModel
. If you subclass this type, use this type parameter to specify the concrete type for the corresponding model.
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,Params
,HasFeaturesCol
,HasLabelCol
,HasPredictionCol
,PredictorParams
,Identifiable
- Direct Known Subclasses:
Classifier
,Regressor
public abstract class Predictor<FeaturesType,Learner extends Predictor<FeaturesType,Learner,M>,M extends PredictionModel<FeaturesType,M>>
extends Estimator<M>
implements PredictorParams
Abstraction for prediction problems (regression and classification). It accepts all NumericType
labels and will automatically cast it to DoubleType in
fit()
. If this predictor supports
weights, it accepts all NumericType weights, which will be automatically casted to DoubleType
in fit()
.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionabstract Learner
Creates a copy of this instance with the same UID and some extra params.Param for features column name.Fits a model to the input data.labelCol()
Param for label column name.Param for prediction column name.setFeaturesCol
(String value) setLabelCol
(String value) setPredictionCol
(String value) transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString, uid
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
Methods inherited from interface org.apache.spark.ml.PredictorParams
validateAndTransformSchema
-
Constructor Details
-
Predictor
public Predictor()
-
-
Method Details
-
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classEstimator<M extends PredictionModel<FeaturesType,
M>> - Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
fit
Description copied from class:Estimator
Fits a model to the input data.- Specified by:
fit
in classEstimator<M extends PredictionModel<FeaturesType,
M>> - Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
labelCol
Description copied from interface:HasLabelCol
Param for label column name.- Specified by:
labelCol
in interfaceHasLabelCol
- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
setFeaturesCol
-
setLabelCol
-
setPredictionCol
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-