Interface Identifiable

All Known Subinterfaces:
AFTSurvivalRegressionParams, ALSModelParams, ALSParams, BisectingKMeansParams, BucketedRandomProjectionLSHParams, ClassifierParams, CountVectorizerParams, CrossValidatorParams, DecisionTreeClassifierParams, DecisionTreeParams, DecisionTreeRegressorParams, FactorizationMachines, FactorizationMachinesParams, FMClassifierParams, FMRegressorParams, FPGrowthParams, GaussianMixtureParams, GBTClassifierParams, GBTParams, GBTRegressorParams, GeneralizedLinearRegressionBase, HasAggregationDepth, HasBlockSize, HasCheckpointInterval, HasCollectSubModels, HasDistanceMeasure, HasElasticNetParam, HasFeaturesCol, HasFitIntercept, HasHandleInvalid, HasInputCol, HasInputCols, HasLabelCol, HasLoss, HasMaxBlockSizeInMB, HasMaxIter, HasNumFeatures, HasOutputCol, HasOutputCols, HasParallelism, HasPredictionCol, HasProbabilityCol, HasRawPredictionCol, HasRegParam, HasRelativeError, HasSeed, HasSolver, HasStandardization, HasStepSize, HasThreshold, HasThresholds, HasTol, HasValidationIndicatorCol, HasVarianceCol, HasVarianceImpurity, HasWeightCol, IDFBase, ImputerParams, IsotonicRegressionBase, KMeansParams, LDAParams, LinearRegressionParams, LinearSVCParams, LogisticRegressionParams, LSHParams, MaxAbsScalerParams, MinMaxScalerParams, MultilayerPerceptronParams, NaiveBayesParams, OneHotEncoderBase, OneVsRestParams, Params, PCAParams, PowerIterationClusteringParams, PredictorParams, ProbabilisticClassifierParams, QuantileDiscretizerBase, RandomForestClassifierParams, RandomForestParams, RandomForestRegressorParams, RFormulaBase, RobustScalerParams, SelectorParams, StandardScalerParams, StringIndexerBase, TrainValidationSplitParams, TreeClassifierParams, TreeEnsembleClassifierParams, TreeEnsembleParams, TreeEnsembleRegressorParams, TreeRegressorParams, UnivariateFeatureSelectorParams, ValidatorParams, VarianceThresholdSelectorParams, VectorIndexerParams, Word2VecBase
All Known Implementing Classes:
AFTSurvivalRegression, AFTSurvivalRegressionModel, ALS, ALSModel, Binarizer, BinaryClassificationEvaluator, BisectingKMeans, BisectingKMeansModel, BucketedRandomProjectionLSH, BucketedRandomProjectionLSHModel, Bucketizer, ChiSqSelector, ChiSqSelectorModel, ClassificationModel, Classifier, ClusteringEvaluator, ColumnPruner, CountVectorizer, CountVectorizerModel, CrossValidator, CrossValidatorModel, DCT, DecisionTreeClassificationModel, DecisionTreeClassifier, DecisionTreeRegressionModel, DecisionTreeRegressor, DistributedLDAModel, ElementwiseProduct, Estimator, Evaluator, FeatureHasher, FMClassificationModel, FMClassifier, FMRegressionModel, FMRegressor, FPGrowth, FPGrowthModel, GaussianMixture, GaussianMixtureModel, GBTClassificationModel, GBTClassifier, GBTRegressionModel, GBTRegressor, GeneralizedLinearRegression, GeneralizedLinearRegressionModel, HashingTF, IDF, IDFModel, Imputer, ImputerModel, IndexToString, Interaction, IsotonicRegression, IsotonicRegressionModel, JavaParams, KMeans, KMeansModel, LDA, LDAModel, LinearRegression, LinearRegressionModel, LinearSVC, LinearSVCModel, LocalLDAModel, LogisticRegression, LogisticRegressionModel, MaxAbsScaler, MaxAbsScalerModel, MinHashLSH, MinHashLSHModel, MinMaxScaler, MinMaxScalerModel, Model, MulticlassClassificationEvaluator, MultilabelClassificationEvaluator, MultilayerPerceptronClassificationModel, MultilayerPerceptronClassifier, NaiveBayes, NaiveBayesModel, NGram, Normalizer, OneHotEncoder, OneHotEncoderModel, OneVsRest, OneVsRestModel, PCA, PCAModel, Pipeline, PipelineModel, PipelineStage, PolynomialExpansion, PowerIterationClustering, PredictionModel, Predictor, PrefixSpan, ProbabilisticClassificationModel, ProbabilisticClassifier, QuantileDiscretizer, RandomForestClassificationModel, RandomForestClassifier, RandomForestRegressionModel, RandomForestRegressor, RankingEvaluator, RegexTokenizer, RegressionEvaluator, RegressionModel, Regressor, RFormula, RFormulaModel, RobustScaler, RobustScalerModel, SQLTransformer, StandardScaler, StandardScalerModel, StopWordsRemover, StringIndexer, StringIndexerModel, Tokenizer, TrainValidationSplit, TrainValidationSplitModel, Transformer, UnaryTransformer, UnivariateFeatureSelector, UnivariateFeatureSelectorModel, VarianceThresholdSelector, VarianceThresholdSelectorModel, VectorAssembler, VectorAttributeRewriter, VectorIndexer, VectorIndexerModel, VectorSizeHint, VectorSlicer, Word2Vec, Word2VecModel

public interface Identifiable
Trait for an object with an immutable unique ID that identifies itself and its derivatives.

WARNING: There have not yet been final discussions on this API, so it may be broken in future releases.

  • Method Summary

    Modifier and Type
    Method
    Description
     
    uid()
    An immutable unique ID for the object and its derivatives.
  • Method Details

    • uid

      String uid()
      An immutable unique ID for the object and its derivatives.
      Returns:
      (undocumented)
    • toString

      String toString()
      Overrides:
      toString in class Object