Package org.apache.spark.ml.clustering
Class BisectingKMeansModel
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,BisectingKMeansParams
,Params
,HasDistanceMeasure
,HasFeaturesCol
,HasMaxIter
,HasPredictionCol
,HasSeed
,HasWeightCol
,HasTrainingSummary<BisectingKMeansSummary>
,Identifiable
,MLWritable
public class BisectingKMeansModel
extends Model<BisectingKMeansModel>
implements BisectingKMeansParams, MLWritable, HasTrainingSummary<BisectingKMeansSummary>
Model fitted by BisectingKMeans.
param: parentModel a model trained by BisectingKMeans
.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Method Summary
Modifier and TypeMethodDescriptionVector[]
double
computeCost
(Dataset<?> dataset) Deprecated.This method is deprecated and will be removed in future versions.Creates a copy of this instance with the same UID and some extra params.Param for The distance measure.Param for features column name.final IntParam
k()
The desired number of leaf clusters.static BisectingKMeansModel
final IntParam
maxIter()
Param for maximum number of iterations (>= 0).final DoubleParam
The minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).int
int
Param for prediction column name.static MLReader<BisectingKMeansModel>
read()
final LongParam
seed()
Param for random seed.setFeaturesCol
(String value) setPredictionCol
(String value) summary()
Gets summary of model on training set.toString()
Transforms the input dataset.transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.uid()
An immutable unique ID for the object and its derivatives.Param for weight column name.write()
Returns anMLWriter
instance for this ML instance.Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.clustering.BisectingKMeansParams
getK, getMinDivisibleClusterSize, validateAndTransformSchema
Methods inherited from interface org.apache.spark.ml.param.shared.HasDistanceMeasure
getDistanceMeasure
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasMaxIter
getMaxIter
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol
Methods inherited from interface org.apache.spark.ml.util.HasTrainingSummary
hasSummary, setSummary
Methods inherited from interface org.apache.spark.ml.param.shared.HasWeightCol
getWeightCol
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
Methods inherited from interface org.apache.spark.ml.util.MLWritable
save
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Method Details
-
read
-
load
-
k
Description copied from interface:BisectingKMeansParams
The desired number of leaf clusters. Must be > 1. Default: 4. The actual number could be smaller if there are no divisible leaf clusters.- Specified by:
k
in interfaceBisectingKMeansParams
- Returns:
- (undocumented)
-
minDivisibleClusterSize
Description copied from interface:BisectingKMeansParams
The minimum number of points (if greater than or equal to 1.0) or the minimum proportion of points (if less than 1.0) of a divisible cluster (default: 1.0).- Specified by:
minDivisibleClusterSize
in interfaceBisectingKMeansParams
- Returns:
- (undocumented)
-
weightCol
Description copied from interface:HasWeightCol
Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.- Specified by:
weightCol
in interfaceHasWeightCol
- Returns:
- (undocumented)
-
distanceMeasure
Description copied from interface:HasDistanceMeasure
Param for The distance measure. Supported options: 'euclidean' and 'cosine'.- Specified by:
distanceMeasure
in interfaceHasDistanceMeasure
- Returns:
- (undocumented)
-
predictionCol
Description copied from interface:HasPredictionCol
Param for prediction column name.- Specified by:
predictionCol
in interfaceHasPredictionCol
- Returns:
- (undocumented)
-
seed
Description copied from interface:HasSeed
Param for random seed. -
featuresCol
Description copied from interface:HasFeaturesCol
Param for features column name.- Specified by:
featuresCol
in interfaceHasFeaturesCol
- Returns:
- (undocumented)
-
maxIter
Description copied from interface:HasMaxIter
Param for maximum number of iterations (>= 0).- Specified by:
maxIter
in interfaceHasMaxIter
- Returns:
- (undocumented)
-
uid
Description copied from interface:Identifiable
An immutable unique ID for the object and its derivatives.- Specified by:
uid
in interfaceIdentifiable
- Returns:
- (undocumented)
-
numFeatures
public int numFeatures() -
copy
Description copied from interface:Params
Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. SeedefaultCopy()
.- Specified by:
copy
in interfaceParams
- Specified by:
copy
in classModel<BisectingKMeansModel>
- Parameters:
extra
- (undocumented)- Returns:
- (undocumented)
-
setFeaturesCol
-
setPredictionCol
-
transform
Description copied from class:Transformer
Transforms the input dataset.- Specified by:
transform
in classTransformer
- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Specified by:
transformSchema
in classPipelineStage
- Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-
predict
-
clusterCenters
-
computeCost
Deprecated.This method is deprecated and will be removed in future versions. Use ClusteringEvaluator instead. You can also get the cost on the training dataset in the summary.Computes the sum of squared distances between the input points and their corresponding cluster centers.- Parameters:
dataset
- (undocumented)- Returns:
- (undocumented)
-
write
Description copied from interface:MLWritable
Returns anMLWriter
instance for this ML instance.- Specified by:
write
in interfaceMLWritable
- Returns:
- (undocumented)
-
toString
- Specified by:
toString
in interfaceIdentifiable
- Overrides:
toString
in classObject
-
summary
Gets summary of model on training set. An exception is thrown ifhasSummary
is false.- Specified by:
summary
in interfaceHasTrainingSummary<BisectingKMeansSummary>
- Returns:
- (undocumented)
-