Class ClassificationModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>>
Object
org.apache.spark.ml.PipelineStage
org.apache.spark.ml.Transformer
org.apache.spark.ml.Model<M>
org.apache.spark.ml.PredictionModel<FeaturesType,M>
org.apache.spark.ml.classification.ClassificationModel<FeaturesType,M>
- Type Parameters:
FeaturesType
- Type of input features. E.g.,Vector
M
- Concrete Model type
- All Implemented Interfaces:
Serializable
,org.apache.spark.internal.Logging
,ClassifierParams
,Params
,HasFeaturesCol
,HasLabelCol
,HasPredictionCol
,HasRawPredictionCol
,PredictorParams
,Identifiable
- Direct Known Subclasses:
LinearSVCModel
,ProbabilisticClassificationModel
public abstract class ClassificationModel<FeaturesType,M extends ClassificationModel<FeaturesType,M>>
extends PredictionModel<FeaturesType,M>
implements ClassifierParams
Model produced by a
Classifier
.
Classes are indexed {0, 1, ..., numClasses - 1}.
- See Also:
-
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptionabstract int
Number of classes (values which the label can take).double
predict
(FeaturesType features) Predict label for the given features.abstract Vector
predictRaw
(FeaturesType features) Raw prediction for each possible label.Param for raw prediction (a.k.a.setRawPredictionCol
(String value) Transforms dataset by reading fromPredictionModel.featuresCol()
, and appending new columns as specified by parameters: - predicted labels asPredictionModel.predictionCol()
of typeDouble
- raw predictions (confidences) asrawPredictionCol()
of typeVector
.transformImpl
(Dataset<?> dataset) transformSchema
(StructType schema) Check transform validity and derive the output schema from the input schema.Methods inherited from class org.apache.spark.ml.PredictionModel
featuresCol, labelCol, numFeatures, predictionCol, setFeaturesCol, setPredictionCol
Methods inherited from class org.apache.spark.ml.Transformer
transform, transform, transform
Methods inherited from class org.apache.spark.ml.PipelineStage
params
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
Methods inherited from interface org.apache.spark.ml.classification.ClassifierParams
validateAndTransformSchema
Methods inherited from interface org.apache.spark.ml.param.shared.HasFeaturesCol
featuresCol, getFeaturesCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasLabelCol
getLabelCol, labelCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasPredictionCol
getPredictionCol, predictionCol
Methods inherited from interface org.apache.spark.ml.param.shared.HasRawPredictionCol
getRawPredictionCol
Methods inherited from interface org.apache.spark.ml.util.Identifiable
toString, uid
Methods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext
Methods inherited from interface org.apache.spark.ml.param.Params
clear, copy, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, onParamChange, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
-
Constructor Details
-
ClassificationModel
public ClassificationModel()
-
-
Method Details
-
numClasses
public abstract int numClasses()Number of classes (values which the label can take). -
predict
Predict label for the given features. This method is used to implementtransform()
and outputPredictionModel.predictionCol()
.This default implementation for classification predicts the index of the maximum value from
predictRaw()
.- Specified by:
predict
in classPredictionModel<FeaturesType,
M extends ClassificationModel<FeaturesType, M>> - Parameters:
features
- (undocumented)- Returns:
- (undocumented)
-
predictRaw
Raw prediction for each possible label. The meaning of a "raw" prediction may vary between algorithms, but it intuitively gives a measure of confidence in each possible label (where larger = more confident). This internal method is used to implementtransform()
and outputrawPredictionCol()
.- Parameters:
features
- (undocumented)- Returns:
- vector where element i is the raw prediction for label i. This raw prediction may be any real number, where a larger value indicates greater confidence for that label.
-
rawPredictionCol
Description copied from interface:HasRawPredictionCol
Param for raw prediction (a.k.a. confidence) column name.- Specified by:
rawPredictionCol
in interfaceHasRawPredictionCol
- Returns:
- (undocumented)
-
setRawPredictionCol
-
transform
Transforms dataset by reading fromPredictionModel.featuresCol()
, and appending new columns as specified by parameters: - predicted labels asPredictionModel.predictionCol()
of typeDouble
- raw predictions (confidences) asrawPredictionCol()
of typeVector
.- Overrides:
transform
in classPredictionModel<FeaturesType,
M extends ClassificationModel<FeaturesType, M>> - Parameters:
dataset
- input dataset- Returns:
- transformed dataset
-
transformImpl
-
transformSchema
Description copied from class:PipelineStage
Check transform validity and derive the output schema from the input schema.We check validity for interactions between parameters during
transformSchema
and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled byParam.validate()
.Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
- Overrides:
transformSchema
in classPredictionModel<FeaturesType,
M extends ClassificationModel<FeaturesType, M>> - Parameters:
schema
- (undocumented)- Returns:
- (undocumented)
-